Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 978–984 | Cite as

Influence of External Conditions on the Relation between the Physical and Chemical Processes in the Thermodegradation of Plasticized Poly(Vinyl Chloride)

  • V. B. IvanovEmail author
  • E. V. Solina
  • O. V. Staroverova
  • E. I. Popova
  • O. L. Lazareva
  • O. A. Belova
Chemical Physics of Polymer Materials
  • 20 Downloads

Abstract

The heat-induced loss of plasticizer from and dehydrochlorination of poly(vinyl chloride) plasticized with dioctyl phthalate is studied by thermogravimetric analysis, IR spectroscopy, and colorimetry. Specific features and general regularities of the processes at high (200–320°C) and medium (100–132°C) temperatures are established. It is shown that the dehydrochlorination and oxidation processes dominate in confined space whereas, in unconfined space, plasticizer is lost largely through evaporation. The activation energies of the initial stages of the processes are determined.

Keywords

dehydrochlorination dioctyl phthalate poly(vinyl chloride) thermogravimetric analysis colorimetry activation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Z. Gumargalieva, V. B. Ivanov, G. E. Zaikov, Ju. V. Moiseev, and T. B. Pokholok, Polym. Degr. Stab. 52, 71 (1996).CrossRefGoogle Scholar
  2. 2.
    M. Ekelund, B. Azhdar, M. S. Hedenqvist, and U. W. Gedde, Polym. Degr. Stab. 93, 1704 (2008).CrossRefGoogle Scholar
  3. 3.
    K. S. Minsker, S. V. Kolesov, and G. E. Zaikov, Degradation and Stabilization of Vinylchloride Based Polymers (Pergamon, Oxford, 1988).Google Scholar
  4. 4.
    E. Linde and U. W. Gedde, Polym. Degr. Stab. 101, 24 (2014).CrossRefGoogle Scholar
  5. 5.
    V. B. Ivanov, A. A. Zavodchikova, E. I. Popova, O. L. Lazareva, O. A. Belova, et al., Thermochim. Acta 589, 70 (2014).CrossRefGoogle Scholar
  6. 6.
    E. V. Bystritskaya, T. V. Monakhova, and V. B. Ivanov, Polym. Test. 32, 197 (2013).CrossRefGoogle Scholar
  7. 7.
    M. A. Zhuravlev and V. B. Ivanov, Eur. Polym. J. 25, 391 (1989).CrossRefGoogle Scholar
  8. 8.
    E. V. Bystritskaya, O. N. Karpukhin, and A. A. Kryuchkov, Polymer Sci., Ser. B 48, 46 (2006).CrossRefGoogle Scholar
  9. 9.
    S. Vyazovkin, A. K. Burnham, J. M. Criado, et al., Thermochim. Acta 520, 1 (2011).CrossRefGoogle Scholar
  10. 10.
    E. V. Bystritskaya, O. N. Karpukhin, and A. V. Kutsenova, Russ. J. Phys. Chem. B 7, 478 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Beneš, N. Milanov, G. Matuschek, et al., J. Therm. Anal. Calorim. 78, 621 (2004).CrossRefGoogle Scholar
  12. 12.
    M. Beneš, V. Plaček, et al., J. Therm. Anal. Calorim. 82, 761 (2005).CrossRefGoogle Scholar
  13. 13.
    H. Kissinger, Anal. Chem. 29, 1072 (1957).CrossRefGoogle Scholar
  14. 14.
    J. P. H. M. Hillemans, C. M. C. J. Colemonts, R. J. Meier, and B. J. Kip, Polym. Deg. Stab. 42, 323 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. B. Ivanov
    • 1
    Email author
  • E. V. Solina
    • 1
  • O. V. Staroverova
    • 1
  • E. I. Popova
    • 2
  • O. L. Lazareva
    • 2
  • O. A. Belova
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Dukhov All-Russia Research Institute of AutomaticsMoscowRussia

Personalised recommendations