Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 963–973 | Cite as

Mathematical Modeling of the Interaction of a Shock Wave with a Dense Cloud of Particles within the Framework of the Two-Fluid Approach

  • P. S. UtkinEmail author
Combustion, Explosion, and Shock Waves


A parametric numerical study of the interaction of a shock wave with a dense cloud of particles is performed. The problem is solved in the framework of the two-fluid approach, with both the gas and dispersed phases are considered compressible media non-equilibrium in velocity and pressure. The system of governing hyperbolic equations was numerically solved using the Harten–Lax–van Leer method. The statement of the problem corresponds to the arrangement of natural experiments. The simulations revealed the main features of the process, such as the formation of transmitted and reflected waves, the movement of the cloud with a steep leading edge and a smeared tailing edge. The amplitudes of the transmitted and reflected waves, as well as the dynamics of the motion of the cloud, are compared to those observed in real experiments. The influence of the parameters of the equation of state of the dispersed phase and some properties of the computational algorithm on the characteristics of the process is examined.


shock wave cloud of particles tight packing two-phase medium mathematical modeling hyperbolic system of equations HLL method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Sommerfeld, Exp. Fluids 3, 197 (1985).CrossRefGoogle Scholar
  2. 2.
    A. V. Fedorov and I. A. Fedorchenko, Combust. Explos., Shock Waves 46, 89 (2010).CrossRefGoogle Scholar
  3. 3.
    T. A. Khmel’ and A. V. Fedorov, Mat. Model. 18 (8), 49 (2006).Google Scholar
  4. 4.
    D. A. Tropin and A. V. Fedorov, Vychisl. Tekhnol. 18 (4), 64 (2013).Google Scholar
  5. 5.
    I. V. Semenov, P. S. Utkin, I. F. Akhmed’yanov, et al., Vychisl. Metody Programm. 12 (1), 183 (2011).Google Scholar
  6. 6.
    B. S. Ermolaev, A. A. Sulimov, A. V. Roman’kov, V. E. Khrapovskii, A. A. Belyaev, and A. B. Crowley, Russ. J. Phys. Chem. B 9, 375 (2015).CrossRefGoogle Scholar
  7. 7.
    R. Klemens, P. Kosinski, P. Wolanski, et al., J. Loss Prevent. Proc. 15, 469 (2001).CrossRefGoogle Scholar
  8. 8.
    A. V. Fedorov, N. N. Fedorova, I. A. Fedorchenko, et al., Prikl. Mekh. Tekh. Fiz. 43 (6), 113 (2002).Google Scholar
  9. 9.
    S. P. Medvedev, S. M. Frolov, and B. E. Gel’fand, Inzh.-Fiz. Zh. 58, 924 (1990).Google Scholar
  10. 10.
    X. Rogue, G. Rodriguez, J. F. Haas, et al., Shock Waves 8, 29 (1998).CrossRefGoogle Scholar
  11. 11.
    B. C. Fan, Z. H. Chen, X. H. Jiang, et al., Shock Waves 16, 179 (2007).CrossRefGoogle Scholar
  12. 12.
    J. L. Wagner, S. J. Beresh, S. P. Kearney, et al., Exp. Fluids 52, 1507 (2012).CrossRefGoogle Scholar
  13. 13.
    T. A. Khmel’ and A. V. Fedorov, Combust. Explos., Shock Waves 50, 196 (2014).CrossRefGoogle Scholar
  14. 14.
    T. Khmel and A. Fedorov, J. Loss Prevent. Proc. 36, 223 (2015).CrossRefGoogle Scholar
  15. 15.
    R. W. Houim and E. S. Oran, J. Fluid Mech. 789, 166 (2016).CrossRefGoogle Scholar
  16. 16.
    T. P. McGrath II, J. G. St. Clair, and S. Balachandar, J. Appl. Phys. 119, 174903 (2016).CrossRefGoogle Scholar
  17. 17.
    I. A. Bedarev and A. V. Fedorov, Vychisl. Tekhnol. 20 (2), 3 (2015).Google Scholar
  18. 18.
    M. R. Baer and J. W. Nunziato, Int. J. Multiphase Flow 21, 861 (1986).CrossRefGoogle Scholar
  19. 19.
    D. Gidaspow, Multiphase Flow and Fluidization (Academic, San Diego, 1994).Google Scholar
  20. 20.
    R. Saurel and R. Abgrall, J. Comp. Phys. 150, 425 (1999).CrossRefGoogle Scholar
  21. 21.
    V. M. Boiko, V. P. Kiselev, S. P. Kiselev, et al., Shock Waves 7, 275 (1997).CrossRefGoogle Scholar
  22. 22.
    J. D. Regele, J. Rabinovitch, T. Colonius, et al., Int. J. Multiphase Flow 61, 1 (2014).CrossRefGoogle Scholar
  23. 23.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solving of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  24. 24.
    R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; CRC, Boca Raton, FL, 1990).Google Scholar
  25. 25.
    K. A. Avdeev, V. S. Aksenov, A. A. Borisov, R. R. Tukhvatullina, S. M. Frolov, and F. S. Frolov, Russ. J. Phys. Chem. B 9, 363 (2015).CrossRefGoogle Scholar
  26. 26.
    S. Ergun, Chem. Eng. Prog. 48, 89 (1952).Google Scholar
  27. 27.
    D. W. Schwendeman, C. W. Wahle, and A. K. Kapila, J. Comp. Phys. 212, 490 (2006).CrossRefGoogle Scholar
  28. 28.
    E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd ed. (Springer, Berlin, Heidelberg, 2009).CrossRefGoogle Scholar
  29. 29.
    K. Benkiewicz and A. K. Hayashi, in Control of Detonation Processes, Ed. by G. D. Roy, S. M. Frolov, D. Netzer, and A. A. Borisov (ELEX-KM, Moscow, 2000), p. 55.Google Scholar
  30. 30.
    I. E. Ivanov, Vestn. MAI 16 (2), 62 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute for Computer Aided DesignRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow oblastRussia

Personalised recommendations