Skip to main content
Log in

Morphological features of composites prepared from polylactide and iron(III)−tetraphenylporphyrin complex

  • Chemical Physics of Biological Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A material based on polylactide and iron(III)–tetraphenylporphyrin complex is prepared. The UV electronic spectra of the samples indicate the presence of porphyrin microinclusions in the polylactide matrix. According to optical microscopy, these inclusions have a size of 50–200 μm. It is determined that the melting point of the polylactide matrix decreases by 1–3°C with increasing porphyrin content in the composition. An experiment at a temperature of 40 ± 1°C shows that the degree of crystallinity of the polylactide matrix of the compositions varies insignificantly and does not exceed the degree of crystallinity of the original pure polylactide. In this case, the melting point remains almost unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Tertyshnaya, L. S. Shibryaeva, O. V. Shatalova, and A. V. Krivandin, Khim. Fiz. 22 (9), 98 (2003).

    CAS  Google Scholar 

  2. L. Santonja-Blasco, A. Ribes-Greus, and R. G. Alamo, Polym. Degrad. Stab. 98, 771 (2013).

    Article  CAS  Google Scholar 

  3. L. S. Shibryaeva, Yu. V. Tertyshnaya, A. A. Ol’khov, O. G. Sidorova, and A. L. Iordanskii, Polymer Sci., Ser. A 45, 470 (2003).

    Google Scholar 

  4. H.-T. Hsu, H. Tan, and Y. L. Yao, Polymer. Degrad. Stab. 97, 88 (2012).

    Article  CAS  Google Scholar 

  5. M. V. Podzorova, Yu. V. Tertyshnaya, and A. A. Popov, Russ. J. Phys. Chem. B 8, 726 (2014).

    Article  CAS  Google Scholar 

  6. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Progr. Polym. Sci. 35, 338 (2010).

    Article  CAS  Google Scholar 

  7. V. Piemonte and F. Gironi, Energy Sources, Part A 34, 1995 (2012).

    Article  CAS  Google Scholar 

  8. V. Piemonte, J. Polym. Environ. 19, 988 (2011).

    Article  CAS  Google Scholar 

  9. M. Obarzanek-Fojt, Yu. Elbs-Glatz, E. Lizundia, et al., Nanomed.: Nanotechnol., Biol. Med. 10, 1041 (2014).

    Article  CAS  Google Scholar 

  10. M. A. Sevost’yanov, A. S. Baikin, E. O. Nasakina, et al., Usp. Sovrem. Estestvozn., No. 5, 43 (2016).

    Google Scholar 

  11. R. Ortiz, S. Moreno-Flores, I. Quintana, et al., Mater. Sci. Eng. C 37, 241 (2014).

    Article  CAS  Google Scholar 

  12. C. Chen, L. Dong, and M. K. Cheung, Eur. Polym. J. 41, 958 (2005).

    Article  CAS  Google Scholar 

  13. I. Batinic-Haberle, Z. Rajic, A. Tovmasyan, et al., Free Radical Biol. Med. 51, 1035 (2011).

    Article  CAS  Google Scholar 

  14. E. N. Golubeva, A. V. Lobanov, V. I. Pergushov, N. A. Chumakova, and A. I. Kokorin, Dokl. Chem. 421, 171 (2008).

    Article  CAS  Google Scholar 

  15. E. N. Golubeva, A. V. Lobanov, and A. I. Kokorin, Russ. J. Phys. Chem. B 3, 179 (2009).

    Article  Google Scholar 

  16. A. V. Lobanov, E. N. Golubeva, E. M. Zubanova, and M. Ya. Mel’nikov, High Energy Chem. 43, 384 (2009).

    Article  CAS  Google Scholar 

  17. A. V. Lobanov, E. N. Golubeva, and M. Ya. Mel’nikov, Mendeleev Commun. 20, 343 (2010).

    Article  CAS  Google Scholar 

  18. S. D. Aust, L. A. Morehouse, and C. E. Thomas, J. Free Radical Biol. Med. 1, 3 (1985).

    Article  CAS  Google Scholar 

  19. I. A. Besschetnova, A. V. Chudinov, D. N. Kalyuzhnyi, A. K. Shchelkina, O. F. Borisova, S. V. Tokalov, V. E. Kuznetsova, A. V. Lobanov, V. D. Rumyantseva, V. E. Barskii, and A. D. Mirzabekov, Biophysics 47, 248 (2002).

    Google Scholar 

  20. A. V. Lobanov, G. A. Gromova, Yu. G. Gorbunova, and A. Yu. Tsivadze, Prot. Met. Phys. Chem. Surf. 50, 570 (2014).

    Article  CAS  Google Scholar 

  21. A. V. Lobanov, N. A. Rubtsova, Yu. A. Vedeneeva, and G. G. Komissarov, Dokl. Chem. 421, 190 (2008).

    Article  CAS  Google Scholar 

  22. N. B. Sul’timova, P. P. Levin, A. V. Lobanov, and A. M. Muzafarov, High Energy Chem. 47, 98 (2013).

    Article  Google Scholar 

  23. L.-T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci. 33, 820 (2008).

    Article  CAS  Google Scholar 

  24. M. Yu. Kerber, I. Yu. Gorbunova, S. I. Vladimirova, and E. S. Kuksenko, Plast. Massy, No. 5, 4 (2003).

    Google Scholar 

  25. Yu. V. Tertyshnaya, S. G. Karpova, O. V. Shatalova, A. V. Krivandin and L. S. Shibryaeva, Polymer Sci., Ser. A 58, 50 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tertyshnaya.

Additional information

Original Russian Text © Yu.V. Tertyshnaya, A.V. Khvatov, A.V. Lobanov, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 9, pp. 53–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tertyshnaya, Y.V., Khvatov, A.V. & Lobanov, A.V. Morphological features of composites prepared from polylactide and iron(III)−tetraphenylporphyrin complex. Russ. J. Phys. Chem. B 11, 828–832 (2017). https://doi.org/10.1134/S199079311705013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311705013X

Keywords

Navigation