Russian Journal of Physical Chemistry B

, Volume 11, Issue 4, pp 635–642 | Cite as

Chemical safety of aquatic ecosystems: Biological methods of control

  • E. V. Shtamm
  • Yu. I. SkurlatovEmail author
  • L. S. Ernestova
  • I. S. Baikova
  • M. V. Dyubanov
Chemical Physics of Ecological Processes


A comparative analysis of biological methods for monitoring the toxic properties of water in the context of ensuring the chemical safety of aquatic ecosystems is carried out. The analysis is based on the time scale of response to the toxic impact, possibility of identifying sources of chemical pollution, quantitative assessment of toxicity effects, and sensitivity. The method of bioassaying the genotoxic properties of native (without preliminary treatment) samples of natural and waste water by recording changes in the number of chromosomal aberrations in transplantable mammalian cell cultures is described in detail as the most informative. The sensitivity of the method makes it possible to detect the genotoxic effects of hydrophobic toxicants at a concentration of less than 1 μg/dm3. Analysis of ecotoxicological situations in surface water bodies indicates that water-soluble compounds not controlled by hydrochemical monitoring can play a key role in the formation of toxic properties of aquatic media.


pollutants benzo[a]pyrene polychlorinated organic compounds reduced sulfur compounds toxicity control methods bioassaying cytogenetic effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    GN (Hygienic Standards) No. http://www. Scholar
  2. 2.
    Regulations on Water Quality of Water Bodies of Fishery Importance, Including Standards for Maximum Permissible Concentrations of Harmful Chemicals in the Waters of Water Bodies of Fishery Importance (VNIRO, Moscow, 2011) [in Russian].Google Scholar
  3. 3.
    Yu. I. Skurlatov, E. V. Vichutinskaya, N. I. Zaitseva, E. V. Shtamm, V. O. Shvydkii, and A. V. Bloshenko, Russ. J. Phys. Chem. B 9, 412 (2015).CrossRefGoogle Scholar
  4. 4.
    M. M. Telitchenko, Gidrobiol. Zh. 18 (6), 22 (1982).Google Scholar
  5. 5.
    V. K. Shitikov, G. S. Rozenberg, and T. D. Zinchenko, Quantitative Hydroecology: Methods, Principles, and Decisions (Nauka, Moscow, 2005) [in Russian].Google Scholar
  6. 6.
    V. A. Abakumova, Practical Guide on Methods of Hydrobiological Analysis of Surface Waters and Bottom Sediments (Gidrometeoizdat, St. Petersburg, 1983) [in Russian].Google Scholar
  7. 7.
    RD (Guidance Document) No. 52.24.564-96. Scholar
  8. 8.
    RD (Guidance Document) No. 52.24.565-96. http://www. Scholar
  9. 9.
    Environmental Fate and Effects of Pulp and Paper Mill Effluents, Ed. by M. R. Servos, K. R. Munkittrick, J. H. Carey, and G. J. van der Kraak (St. Lucie, Delray Beach, FL, 1996).Google Scholar
  10. 10.
    D. W. Kuehl, B. C. Butterworth, W. DeVita, and C. P. Sauer, Biomed. Environ. Mass Spectrosc. 14, 443 (1987).CrossRefGoogle Scholar
  11. 11.
    M. R. Servos, S. Y. Huestis, D. M. Whittle, et al., Environ. Toxicol. Chem. 13, 1103 (1994).Google Scholar
  12. 12.
    D. C. G. Muir, A. L. Yarlchewski, D. A. Mether, et al., Environ. Toxicol. Chem. 9, 1463 (1990).CrossRefGoogle Scholar
  13. 13.
    A. Oikari and P. Lindström-Seppä, Chemosphere 20, 1079 (1990).CrossRefGoogle Scholar
  14. 14.
    L. A. Lesnikov, Basic Problems, Possibilities, and Limitations of Bioassaying. Theoretical Issues of Bioassaying (Inst. Biol. Vnutr. Vod AN SSSR, Volgograd, 1983) pp. 3, 11, 38 [in Russian].Google Scholar
  15. 15.
    Methods of Water Bioassaying, Ed. by A. N. Krainyukova and L. Braginskii (OIKhFI, Chernogolovka, 1988) [in Russian].Google Scholar
  16. 16.
    O. F. Filenko, Water Toxicology (Mosk. Gos. Univ., Chernogolovka, 1988) [in Russian].Google Scholar
  17. 17.
    B. A. Flerov, Ecological Physiological Aspects of Toxicology of Freshwater Animals (Nauka, Leningrad, 1989) [in Russian].Google Scholar
  18. 18.
    Guidelines for the Determination the Toxicity of Water, Bottom Sediments, Pollutants, and Drilling Fluids by Bioassaying Method (REFIYa, NIA-Priroda, Moscow, 2002) [in Russian].Google Scholar
  19. 19.
    N. S. Zhmur, State and Industrial Control of Water Toxicity by Bioassaying Methods in Russia (Mezhdun. Dom Sotrudnichestva, Moscow, 1997) [in Russian].Google Scholar
  20. 20.
    PND FT (Federal Environmental Regulatory Document) No. 14.1:2:3:4.11-04 (16.1:2:3:3.8-04). http://www. bestpravo. rurossijskoje/ys-pravo/w7p.htmGoogle Scholar
  21. 21.
    PND FT (Federal Environmental Regulatory Document) No. 14.1:2:4.16-09/16.1:2.3:3.14-09, FR.1.31.2009.06643. Scholar
  22. 22.
    RD (Guidance Document) No. 52.24.566-94 (Gidrometeoizdat, St. Petersburg, 2004).Google Scholar
  23. 23.
    FR (Federal Register) No. FR.1.39.2007.03222 (Akvaros, Moscow, 2007). Scholar
  24. 24.
    FR (Federal Register) No. FR.1.39.2007.03221 (Akvaros, Moscow, 2007). Scholar
  25. 25.
    Methods of Bioindication and Bioassaying of Natural Waters, Ed. by V. A. Bryzgalo and T. A. Khoruzhaya (Gidrometeoizdat, Leningrad, 1989), No. 2 [in Russian].Google Scholar
  26. 26.
    A. M. Nikanorov, T. A. Khoruzhaya, A. G. Stradomskaya, and T. V. Mironova, Water Resour. 31, 189 (2004).CrossRefGoogle Scholar
  27. 27.
    V. A. Bryzgalo, A. M. Korshun, A. M. Nikanorov, and L. P. Sokolova, Water Resour. 27, 322 (2000).Google Scholar
  28. 28.
    A. M. Nikanorov, T. A. Khoruzhaya, and N. A. Martysheva, Russ. Meteorol. Hydrol. 37, 269 (2012).CrossRefGoogle Scholar
  29. 29.
    B. N. Ames, J. VcCann, and E. Jamasaki, Mutat. Res. 31, 347 (1975).CrossRefGoogle Scholar
  30. 30.
    S. M. Galloway, M. J. Aardema, M. Ishidate, Jr., et al., Mutat. Res. 312, 241 (1994).CrossRefGoogle Scholar
  31. 31.
    RD (Guidance Document) No. 52.18.682-2006 (Vektor TiS, Nizh. Novgorod, 2007). Scholar
  32. 32.
    Yu. I. Skurlatov, E. V. Shtamm, L. S. Ernestova, et al., in Proceedings of the Conference ConSoil 2000 (Thomas Telford, London, 2000), Vol. 2, p. 418.Google Scholar
  33. 33.
    E. V. Shtamm, Yu. I. Skurlatov, L. N. Shishkina, et al., Vodosnabzh. San. Tekh. 16 (10), 18 (1997).Google Scholar
  34. 34.
    D. Scott, S. M. Galloway, R. R. Marshall, et al., Mutat. Res. 257, 147 (1991).CrossRefGoogle Scholar
  35. 35.
    B. A. Revich, S. L. Avaliani, and G. I. Tikhonova, Ecological Epidemiology, The School-Book for Higher School (Akademiya, Moscow, 2004) [in Russian].Google Scholar
  36. 36.
    E. V. Shtamm, Yu. I. Skurlatov, N. B. Kozlova, N. I. Zaitseva, and E. V. Aleksandrova, Water Resour. 38, 237 (2011).CrossRefGoogle Scholar
  37. 37.
    G. V. Kovalysheva, E. E. Lapina, and O. Ya. Bukreeva, Water Resour. 23, 100 (1996).Google Scholar
  38. 38.
    E. V. Shtamm, Yu. I. Skurlatov, V. O. Shvydkii, I. S. Baikova, and E. V. Vichutinskaya, Russ. J. Phys. Chem. B 9, 421 (2015).CrossRefGoogle Scholar
  39. 39.
    Yu. I. Skurlatov, L. S. Ernestova, E. V. Shtamm, et al., Dokl. Akad. Nauk SSSR 276, 1014 (1984).Google Scholar
  40. 40.
    E. V. Shtamm, Ecological Chemistry of Aqueous Media, Proceedings of the 1st All-Union School, Ed. by Yu. I. Skurlatov (TsMP GKNT, Moscow, 1988), p. 278 [in Russian].Google Scholar
  41. 41.
    B. N. Frog, Yu. I. Skurlatov, E. V. Shtamm, and E. V. Vichutinskaya, Vestn. MGSU, No. 6, 105 (2012).CrossRefGoogle Scholar
  42. 42.
    L. D. Luk’yanova, B. S. Balmukhanov, and A. T. Ugolev, Oxygen-Dependent Processes in the Cell and its Functional State (Nauka, Moscow, 1982) [in Russian].Google Scholar
  43. 43.
    G. Sandmann, Physiol. Plant. 65, 481 (1985).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Shtamm
    • 1
  • Yu. I. Skurlatov
    • 2
    Email author
  • L. S. Ernestova
    • 3
  • I. S. Baikova
    • 4
  • M. V. Dyubanov
    • 2
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.AO “Atomenergoproekt”MoscowRussia
  4. 4.ZAO “YuNIMET”MoscowRussia

Personalised recommendations