Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 4, pp 624–634 | Cite as

Calculation of space–time concentration profiles of contaminants in a fixed sorbent bed from experimental data on dynamic water purification

  • I. V. KumpanenkoEmail author
  • A. V. Roshchin
  • N. A. Ivanova
  • A. V. Bloshenko
  • T. S. Volchenko
Chemical Physics of Ecological Processes
  • 38 Downloads

Abstract

A formula for a mathematical description of the relationship between the breakthrough curve C(t)/C0 for the dynamic sorption purification of water and the space–time concentration profile of contaminant q(x, t) in the fixed sorbent bed is derived. The derivation is based on the simplifying assumption that the dependence of the adsorbate concentration profile q(x, t) on the longitudinal coordinate x of the bed is described by the logistic function q(x, t) = a/{1 + exp{–k(t)[xb(t)]}}, in which a is a constant and the time-dependent parameters k(t) and b(t) are expanded into the power series k(t) = k0 + k1t + k2t2 and b(t) = b0 + b1t + b2t2 + b3t3 + b4t4 with the expansion coefficients b0, b1, b2, b3, b4, k0, k1, and k2, so that C(t)/C0 = 1–(S/(C0v))F(t, b0, b1, b2, b3, b4, k0, k1, k2), where C(t) is the breakthrough concentration of contaminant in the water effluent from at the fixed bed, C0 is the concentration of the contaminant in the water influent into the fixed bed, S is the cross-sectional area of the bed, v is the water flow rate, and F is a definite analytic function dependent on the profile q(x, t). The coefficients b0, b1, b2, b3, b4, k0, k1, and k2 are determined by fitting the theoretical breakthrough curve to the experimental one. With the help of this approach, space–time profiles for dynamic water purification from lead, nitrate, and perchlorate ions are calculated. It is shown that the adsorbed contaminant ions are redistributed between different parts of the fixed bed in the course of the adsorption process.

Keywords

fixed sorbent bed space–time concentration profile contaminants effluent curve breakthrough concentration redistribution of ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Thomas and B. Crittenden, Adsorption Technology and Design (Butterworth-Heinemann, Elsevier, Oxford, 1998), pp. 104, 145.Google Scholar
  2. 2.
    M. A. Sohsah, M. M. Ghoneim, S. H. Othman, and B. E. El-Anadouli, in Proceedings of the 8th Radiation Physics and Protection Conference, Beni Sueif-Fayoum, Egypt, 2006, p. 415. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/092/38092990.pdf.Google Scholar
  3. 3.
    T. Hang and R. A. Dimenna, Contract 2003, Report No. DE-AC09-96SR18500, WSRC-MS-99-00943 (U.S. Department of Energy, 2003).Google Scholar
  4. 4.
    D. O. Cooney, Chem. Eng. Comm. 91, 1 (1990).CrossRefGoogle Scholar
  5. 5.
    M. A. S. D. Barros, P. A. Arroyo, and E. A. Silva, Mass Transfer-Advances in Sustainable Energy and Environment Oriented Numerical Modeling, Ed. by H. Nakajima (InTech, Croatia, 2013). doi 10.5772/51954Google Scholar
  6. 6.
    V. K. Gupta, Ind. Eng. Chem. Res. 37, 192 (1998).CrossRefGoogle Scholar
  7. 7.
    I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, A. V. Bloshenko, et al., Russ. J. Phys. Chem. B 11 (2017, in press).Google Scholar
  8. 8.
    D. Tondeur, A. Gorius, and M. Bailly, in Adsorption: Science and Technology, Ed. by A. E. Rodrigues et al., Vol. 158 of NATO Adv. Sci. Inst., Ser. E (Kluwer, Dordrecht, 1989), p. 115.CrossRefGoogle Scholar
  9. 9.
    C. Tien, Adsorption Calculations and Modeling, Ed. by H. Brenner (Elsevier, Netherlands, 1994).Google Scholar
  10. 10.
    S. Afzal, A. Rahimi, M. R. Ehsani, and H. Tavakoli, J. Ind. Eng. Chem. 16, 978 (2010).CrossRefGoogle Scholar
  11. 11.
    A. M. Egorin and V. A. Avramenko, Radiochemistry 54, 483 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Gholami, M. R. Talaie, and S. F. Aghamiri, Gas Process. J. 1 (2), 22 (2013).Google Scholar
  13. 13.
    N. Ping, G. Junjie, and H.-J. Bart, Chin. J. Chem. Eng. 5, 304 (1997).Google Scholar
  14. 14.
    J. T. Nwabanne and P. K. Igbokwe, J. Pure Appl. Sci. 6, 2009 (2012).Google Scholar
  15. 15.
    I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, V. V. Novikov, A. M. Skryl’nikov, A. M. Podvalny, and V. V. Usin, Russ. J. Phys. Chem. B 11, 154 (2017).CrossRefGoogle Scholar
  16. 16.
    I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, A. V. Bloshenko, et al., Russ. J. Phys. Chem. B 11 (4), 568 (2017).CrossRefGoogle Scholar
  17. 17.
    M. Jahangiri-rad, A. Jamshidi, M. Rafiee, and R. Nabizadeh, J. Environ. Health Sci. Eng., 1 (2014). http://www.ijehse.com/content/12/1/90.Google Scholar
  18. 18.
    X. Wu, Y. Wang, L. Xu, and L. Lv, Desalination 256, 136 (2010).CrossRefGoogle Scholar
  19. 19.
    P. Gluszcz, T. Jamroz, B. Sencio, and S. Ledakowicz, Bioprocess. Biosyst. Eng. 26, 185 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Kumpanenko
    • 1
    Email author
  • A. V. Roshchin
    • 1
  • N. A. Ivanova
    • 1
  • A. V. Bloshenko
    • 1
  • T. S. Volchenko
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations