Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 4, pp 684–690 | Cite as

A kinetic model of the reaction of dispersed aluminum with water under exposure to hydrocavitation and stabilization of the final product

  • K. M. KolmakovEmail author
  • A. E. Rozen
  • A. V. Roshchin
  • E. O. Panin
  • A. M. Podval’nyi
Chemical Physics of Ecological Processes

Abstract

The reaction of dispersed aluminum with water under the exposure of an A-IX-2 aluminum-containing explosive compound to hydrocavitation has been discussed. A kinetic model of the process has been developed; the chemical reaction rate constant has been determined under experimental conditions. It has been shown that the reaction occurs in an autocatalytic mode and can lead to the complete conversion of aluminum to aluminum hydroxide. A method to stabilize dispersed aluminum during the hydrocavitational extraction of a conversion explosive by using a phosphate buffer has been developed. Experiments have shown that the phosphate buffer has a stabilizing effect and leads to an improvement of the characteristics of the resulting industrial explosive composition.

Keywords

kinetic model hydrocavitation process dispersed aluminum kinetics chemical reaction rate constant suspension pH aluminum hydroxide phosphate buffer aluminum passivation industrial explosives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Matseevich, V. P. Glinskii, and E. M. Sviridov, in Integrated Disposal of Conventional Types of Ammunition, Proceedings of the International Conference (RARAN, Krasnoarmeisk, 2007), p. 60.Google Scholar
  2. 2.
    Powders, Solid Fuels and Explosives (Min-vo Oborony SSSR, Moscow, 2005), p. 202 [in Russian].Google Scholar
  3. 3.
    D. I. Dement’eva, Introduction to Technology of Energy Saturated Materials (Altaisk. Gos. Tekh. Univ. im. I. I. Polzunova, Biisk, 2009) [in Russian].Google Scholar
  4. 4.
    GOST (State Standard) No. 5494-95, Aluminium Powder, Technical Conditions, 5th ed. (Mezhgos. Sovet Standartiz., Metrol. Sertifikats., Minsk, 2000).Google Scholar
  5. 5.
    Technical Conditions No. 075 118 19-108-97 (KNIIM, Krasnoarmeisk, 1997).Google Scholar
  6. 6.
    V. P. Glinskii, N. K. Shalygin, O. F. Mardasov, et al., in Actual Problems of Utilization of Missiles and Ammunition, Proceedings of the 8th International Conference (RARAN, Krasnoarmeisk, 2011), p. 96.Google Scholar
  7. 7.
    K. M. Kolmakov, V. K. Kolmakov, and G. V. Kozlov, in Proceedings of the International Symposium on Reliability and Quality (Penz. Gos. Univ., Pensa, 2010), Vol. 2, p. 286.Google Scholar
  8. 8.
    Yu. P. Perelygin, Vodoochistka, No. 7, 29 (2014).Google Scholar
  9. 9.
    V. N. Tikhonov, Analytical Chemistry of Aluminum, Ser. Analytical Chemistry of Elements (Nauka, Moscow, 1971) [in Russian].Google Scholar
  10. 10.
    B. Delmon, Introduction à la cinétique hétérogène (Technip, Paris, 1969).Google Scholar
  11. 11.
    R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Constants of Inorganic Substances, The Handbook (Drofa, Moscow, 2006) [in Russian].Google Scholar
  12. 12.
    V. A. Rabinovich and Z. Ya. Khavin, Concise Chemical Handbook (Khimiya, Leningrad, 1991) [in Russian].Google Scholar
  13. 13.
    Yu. Yu. Lur’e, Handbook of Analytical Chemistry, 6th ed. (Khimiya, Moscow, 1989).Google Scholar
  14. 14.
    V. M. Talanov and G. M. Zhitnyi, Ion Equilibria in Aqueous Solutions (Akad. Estestvoznaniya, Moscow, 2007) [in Russian].Google Scholar
  15. 15.
    Technical Conditions No. 5729-090-00284530-00 (Plast-Rifei, Moscow, 2000).Google Scholar
  16. 16.
    Technical Conditions No. 5729-091-00284530-00 (Plast-Rifei, Moscow, 2000).Google Scholar
  17. 17.
    Chemist's Handbook, Ed. by B. P. Nikol’skii, 3rd ed. (Khimiya, Moscow, 1971), Vol. 1 [in Russian].Google Scholar
  18. 18.
    N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth, Oxford, 1997), Vol. 1.Google Scholar
  19. 19.
    H. C. Grigoryan, E. F. Akimova, and T. A. Vagramyan, Phosphatization, The School-Book (Globus, Moscow, 2008) [in Russian].Google Scholar
  20. 20.
    I. I. Khain, Theory and Practice of Metal Phosphatization (Khimiya, Leningrad, 1973) [in Russian].Google Scholar
  21. 21.
    N. I. Koshkin and M. G. Shirkevich, Handbook on Elementary Physics, 9th ed. (Nauka, Moscow, 1982) [in Russian].Google Scholar
  22. 22.
    GOST (State Standard) No. 4545-88 (Izd-vo Standartov, Moscow, 1988).Google Scholar
  23. 23.
    GOST (State Standard) No. R 22.2.07-94 (Izd-vo Standartov, Moscow, 2001).Google Scholar
  24. 24.
    GOST (State Standard) No. 9.707-81 (Izd-vo Standartov, Moscow, 1990).Google Scholar
  25. 25.
    K. M. Kolmakov, A. L. Romanovskii, and G. V. Kozlov, RF Patent No. 2528726, Byull. Izobret. No. 26 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. M. Kolmakov
    • 1
    Email author
  • A. E. Rozen
    • 1
  • A. V. Roshchin
    • 2
  • E. O. Panin
    • 2
  • A. M. Podval’nyi
    • 2
  1. 1.Penza State UniversityPenzaRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations