Russian Journal of Physical Chemistry B

, Volume 11, Issue 4, pp 555–560 | Cite as

Supercritical hydrothermal degradation of hazardous organic wastes with a view to utilizing the potential energy of gaseous products

  • A. V. Roshchin
  • V. S. Grigor’ev
  • A. V. StreletsEmail author
  • A. I. Nikolaev
  • E. G. Raevskaya
  • V. V. Usin
  • T. N. Korneeva
Chemical Physics of Ecological Processes


The method of supercritical hydrothermal degradation was applied to neutralize hazardous organic-containing substances and persistent organic pollutants (polychlorinated biphenyls, organochlorine pesticides, wastewater, and agro-industrial waste) in the autothermal and allothermic modes. It has been established that the realizable modes of supercritical hydrothermal oxidation and pyrolysis provide a degree of decomposition of the investigated organic-containing waste not less than 99.5%, accompanied by the formation of a high-enthalpy steam−gas mixture or combustible gases. The possibility of utilization of the potential energy of gaseous reaction products on a specially designed experimental setup with a multi-tubular spiral-type reactor, which is a part of an autonomous energy complex for generating heat and electric power, is examined.


supercritical hydrothermal degradation autothermal and allothermic modes persistent organic pollutants multi-tubular spiral-type reactor autonomous energy complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Galkin and V. V. Lunin, Russ. Chem. Rev. 74, 21 (2005).CrossRefGoogle Scholar
  2. 2.
    L. V. Astakhova and Yu. A. Mazalov, Naukoemk. Tekhnol. 9 (10), 71 (2008).Google Scholar
  3. 3.
    O. N. Fedyaeva and A. A. Vostrikov, Sverkhkrit. Flyuidy Teor. Prakt. 7 (1), 64 (2012).Google Scholar
  4. 4.
    A. E. Rozen, S. I. Kamyshanskii, E. V. Vorob’ev, V. V. Usin, and E. G. Raevskaya, Russ. J. Phys. Chem. B 6, 744 (2012).CrossRefGoogle Scholar
  5. 5.
    A. E. Rozen, A. V. Roshchin, A. E. Zverovshchikov, V. A. Grachyov, V. S. Grigor’ev, E. V. Vorob’ev, K.M. Kolmakov, I. D. Epinat’ev, and E. G. Raevskaya, Russ. J. Phys. Chem. B 9, 481 (2015).CrossRefGoogle Scholar
  6. 6.
    A. A. Vostrikov, D. Yu. Dubov, and S. A. Psarov, Russ. Chem. Bull. 50, 1478 (2001).CrossRefGoogle Scholar
  7. 7.
    Yu. A. Mazalov, A. V. Bersh, A. V. Merenov, et al., in Proceedings of the 6th International Conference on Power Supply and Energy Efficiency in Agriculture, Moscow, May 13–14, 2008 (GNU VIES, Moscow, 2008), Part 1, p. 390.Google Scholar
  8. 8.
    S. A. Psarov, Cand. Sci. (Phys. Math.) Dissertation (Kutateladze Inst. Thermophys. Sib. Branch RAS, Novosibirsk, 2006) Scholar
  9. 9.
    Information-Technical Handbook on the Best Available Technologies, ITS 9-2015 (Byuro NTD, Moscow, 2015), p. 219 [in Russian].Google Scholar
  10. 10.
    T. G. Krylova and V. S. Grigor’ev, Tr. GOSNITI 109, 132 (2012).Google Scholar
  11. 11.
    M. D. Bermejo and M. J. Cocero, Am. Inst. Chem. Eng. J. 52, 3933 (2006).CrossRefGoogle Scholar
  12. 12.
    R. A. Usmanov, R. R. Gabitov, L. Kh. Miftakhova, and F. M. Gumerov, Vestn. Kazan. Tekhnol. Univ. 17, 244 (2014).Google Scholar
  13. 13.
    N. S. Milovanov, A. I. Feoktistov, V. S. Grigor’ev, and A. A. Volodina, Tr. GOSNITI 121, 120 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Roshchin
    • 1
  • V. S. Grigor’ev
    • 2
  • A. V. Strelets
    • 2
    Email author
  • A. I. Nikolaev
    • 3
  • E. G. Raevskaya
    • 1
  • V. V. Usin
    • 1
  • T. N. Korneeva
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.All-Russia Research and Development and Technology Institute of Machine and Tractor Fleet Operation and RepairMoscowRussia
  3. 3.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations