Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 4, pp 543–554 | Cite as

Analysis of space–time profiles of the concentrations of contaminants in soil during electrokinetic remediation

  • I. V. KumpanenkoEmail author
  • A. V. Roshchin
  • N. A. Ivanova
  • A. V. Bloshenko
  • I. P. Tikhonov
  • A. M. Skryl’nikov
Chemical Physics of Ecological Processes

Abstract

A new semiempirical method for the mathematical description of the space–time concentration profiles of contaminants in soil during its electrokinetic remediation is proposed. The method is based on approximating the experimental data on the spatiotemporal behavior of the concentration, C = C(D a , t). The experimental and theoretical C = C(D a , t) dependences reported in the literature and obtained in our studies were approximated by seventh order polynomials. For example, the space–time concentration profiles of chlorinated hydrocarbon contaminants in unsaturated soils, such as tetrachloroethylene, trichloroethylene and carbon tetrachloride, have been successfully described by a polynomial function with determination coefficients of R2 = 0.9941, 0.9988, and 0.9972, respectively. A pilot test setup for studying the electrokinetic remediation of soils contaminated with mercury compounds, with ten sampling sections and replaceable cartridges with ionites, was designed and built. This setup allowed measuring the space–time concentration profile of mercury in soil samples during electrokinetic remediation. This profile obtained was approximated by a seventh order polynomials with a determination coefficient of R2 = 0.9929. It is shown that the polynomial approximation of the space–time concentration profiles of contaminants in soil describes the experimental C = C(D a , t) dependences no worse (sometimes better) than the Poisson–Nernst–Planck model for ionic flow.

Keywords

electrokinetic remediation of soil contaminants space–time concentration profile polynomial approximation determination coefficients Poisson–Nernst–Planck equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Wuana and F. E. Okieimen, ISRN Ecol. 2011, 1 (2011).CrossRefGoogle Scholar
  2. 2.
    M. T. Alcantara, J. Gomez, M. Pazos, and M. A. Sanroman, Geoderma 173–174, 128 (2012).CrossRefGoogle Scholar
  3. 3.
    S. Annamalai, M. Santhanam, M. Sundaram, and M. P. Curras, Chemosphere 117, 673 (2014).CrossRefGoogle Scholar
  4. 4.
    D. Rosestolato, R. Bagatin, and S. Ferro, Chem. Eng. J. 264, 16 (2015).CrossRefGoogle Scholar
  5. 5.
    Yee-Sern Ng, B. S. Gupta, and M. A. Hashim, Separ. Purif. Technol. 156, 403 (2015).CrossRefGoogle Scholar
  6. 6.
    D. Huang, Q. Xu, J. Cheng, X. Lu, and H. Zhang, Int. J. Electrochem. Sci. 7, 4528 (2012).Google Scholar
  7. 7.
    E. G. Sumbarda-Ramos, O. X. Guerrero-Gutierrez, B. Murillo-Rivera, et al., J. Appl. Electrochem. 40, 1255 (2010).CrossRefGoogle Scholar
  8. 8.
    N. D. Mu’azu, M. H. Essa, and S. Lukman, in Proceedings of the 14th International Conference on Environmental Science and Technology (Global Network on Environ. Sci. Technol., Univ. Aegean, 2015), p. 01331.Google Scholar
  9. 9.
    S.-O. Kim, J.-J. Kim, S.-T. Yun, and K.-W. Kim, Water, Air, Soil Pollut. 150, 135 (2003).CrossRefGoogle Scholar
  10. 10.
    T. V. Grinevich, K. N. Dvoeglazov, A. A. Solov’yanov, et al., Ros. Khim. Zh. (Zh. Ros. Khim. Ob-va im. D. I. Mendeleeva) 49, 76 (2005).Google Scholar
  11. 11.
    I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, V. S. Grigoriev, I. D. Epinatiev, A. V. Bloshenko, and A. E. Goncharova, Russ. J. Phys. Chem. B 9, 132 (2015).CrossRefGoogle Scholar
  12. 12.
    I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, E. O. Panin, and N. A. Sakharova, Russ. J. Phys. Chem. B 9, 295 (2015).CrossRefGoogle Scholar
  13. 13.
    R. F. Thornton and A. P. Shapiro, Emerging Technologies in Hazardous Waste Management V, ACS Sympos. Ser. (Am. Chem. Soc, Washington, DC, 1995), Chap. 4, p. 33. doi 10.1021/bk-1995-0607.ch004CrossRefGoogle Scholar
  14. 14.
    D. S. Schultz, J. Hazard. Mater. 55, 81 (1997).CrossRefGoogle Scholar
  15. 15.
    A. P. Shapiro and R. F. Probsteln, Environ. Sci. Technol. 27, 283 (1993).CrossRefGoogle Scholar
  16. 16.
    J. G. Ibanez, M. M. Singh, R. M. Pike, and Z. Szafran, J. Chem. Educ. 75, 634 (1998).CrossRefGoogle Scholar
  17. 17.
    P. Tsai, C.-H. Huang, and E. Lee, Langmuir 27, 13481 (2011).CrossRefGoogle Scholar
  18. 18.
    A. N. Alshawabkeh and Y. B. Acar, J. Environ. Sci. Health, Pt. A 27, 1835 (1992).Google Scholar
  19. 19.
    Y. B. Acar and R. J. Galr, US Patent No. 5137608 (1992). http://www.freepatentsonline.com/5137608.pdf.Google Scholar
  20. 20.
    J. M. Dzenitis, Environ. Sci. Technol. 31, 1191 (1997).CrossRefGoogle Scholar
  21. 21.
    N. J. Cherepy and D. Wildenschild, Environ. Sci. Technol. 37, 3024 (2003).CrossRefGoogle Scholar
  22. 22.
    R. F. Probstein, P. C. Renaud, and A. P. Shapiro, US Patent No. 5074986 (1991). http://www.freepatentsonline. com/5074986.pdf.Google Scholar
  23. 23.
    L. M. Ottosen, H. K. Hansen, S. Laursen, and A. Villumsen, Environ. Sci. Technol. 31, 1711 (1997).CrossRefGoogle Scholar
  24. 24.
    R. F. Probstein and R. E. Hicks, Science 260, 498 (1993).CrossRefGoogle Scholar
  25. 25.
    G. R. Eykholt and D. E. Daniel, J. Geotech. Eng. 120, 797 (1994).CrossRefGoogle Scholar
  26. 26.
    W. Liu, J. Differ. Equat. 246, 428 (2009).CrossRefGoogle Scholar
  27. 27.
    A. N. Alshawabkeh and Y. B. Acar, J. Geotech. Eng. 122, 186 (1996).CrossRefGoogle Scholar
  28. 28.
    Y. B. Acar, A. N. Alshawabkeh, and R. A. U. S. Parker, Report No. EPA/600/R-97/054 (US Environ. Protect. Agency, Cincinnati, OH, 1997).Google Scholar
  29. 29.
    E. Huckel, Phys. Z. 25, 204 (1924).Google Scholar
  30. 30.
    H. Ohshima, Adv. Colloid Interface Sci. 62, 189 (1995).CrossRefGoogle Scholar
  31. 31.
    D. C. Henry, Proc. Roy. Soc. London, Ser. A 133, 106 (1931).CrossRefGoogle Scholar
  32. 32.
    R. W. O’Brien and L. R. White, J. Chem. Soc., Faraday Trans. 74, 1607 (1978).CrossRefGoogle Scholar
  33. 33.
    P. H. Wiersema, A. L. Loeb, and J. T. Overbeek, J. Colloid Interface Sci. 22, 78 (1966).CrossRefGoogle Scholar
  34. 34.
    M. Z. von Smoluchowski, Phys. Chem. 92, 129 (1917).Google Scholar
  35. 35.
    D. C. Montgomery, Design and Analysis of Experiments, 8th ed. (Wiley, Danvers, 2013).Google Scholar
  36. 36.
    J.-H. Chang, Z. Qiang, and C.-P. Huang, Colloids Surf. A 287, 86 (2006).CrossRefGoogle Scholar
  37. 37.
    J. M. Paz-Garcia, B. Johannesson, L. M. Ottosen, et al., Sep. Purif. Technol. 79, 183 (2011).CrossRefGoogle Scholar
  38. 38.
    Yu. A. Leikin, I. V. Kumpanenko, A. V. Roshchin, et al., Ros. Khim. Zh. (Zh. Ros. Khim. Ob-va im. D. I. Mendeleeva) 57 (1), 52 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Kumpanenko
    • 1
    Email author
  • A. V. Roshchin
    • 1
  • N. A. Ivanova
    • 1
  • A. V. Bloshenko
    • 1
  • I. P. Tikhonov
    • 1
  • A. M. Skryl’nikov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations