Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 4, pp 600–605 | Cite as

Synthesis, phase formation, and properties of nanomaterials based on the titanium dioxide−iron(III) oxide binary system

  • E. M. BayanEmail author
  • T. G. Lupeiko
  • L. E. Pustovaya
  • A. A. Knyashchuk
  • A. G. Fedorenko
Chemical Physics of Ecological Processes

Abstract

The properties of nanomaterials based on the titanium dioxide−iron(III) oxide binary system prepared by low-temperature coprecipitation from aqueous solutions are studied. The effect of thermal treatment conditions and other factors on the process of phase formation and the properties of the synthesized products is examined. It is demonstrated that these materials have a relatively low photocatalytic activity but a high sorption capacity.

Keywords

nanomaterials titanium dioxide iron(III) oxide wastewater treatment sorption photocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chuan Wang, Hong Liu, and Yanzhen Qu, J. Nanomater. 2013, 14 (2013).Google Scholar
  2. 2.
    Z. Ali, B. Raj, M. Vishwas, and M. A. Athhar, Int. J. Curr. Microbiol. Appl. Sci. 5, 705 (2016).CrossRefGoogle Scholar
  3. 3.
    Chen Xiaobo and S. S. Hao, Chem. Rev. 107, 2891 (2007).CrossRefGoogle Scholar
  4. 4.
    Z. R. Ismagilov, L. T. Tsikoza, N. V. Shikina, V. F. Zarytova, V. V. Zinoviev, and S. N. Zagrebelnyi, Russ. Chem. Rev. 78, 873 (2009).CrossRefGoogle Scholar
  5. 5.
    M. Pelaez, N. T. Nolan, S. C. Pillai, et al., Appl. Catal. B 125, 331 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Nowotny, W. Macyk, E. Wachsman, and K. A. Rahman, J. Phys. Chem. C 120, 3221 (2016).CrossRefGoogle Scholar
  7. 7.
    K. Umar, A. Aris, T. Parveen, J. Jaafar, et al., Appl. Catal., A 505, 507 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Hamadanian, S. Karimzadeh, V. Jabbari, and D. Villagran, Mater. Sci. Semicond. Process. 41, 168 (2016).CrossRefGoogle Scholar
  9. 9.
    S. G. Kumar and L. G. Devi, J. Phys. Chem. A 115, 13211 (2011).CrossRefGoogle Scholar
  10. 10.
    E. M. Bayan, T. G. Lupeiko, L. E. Pustovaya, and A. G. Fedorenko, in Proceedings of the 3rd Russian Conference on Current Scientific and Scientific-Technical Problems of Chemical Security of Russia (Buki-Vedi, Moscow, 2016), p. 160.Google Scholar
  11. 11.
    L. G. Devi and R. Kavitha, Appl. Catal. B 140, 559 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, K. Cheng, F. Lv, et al., Colloids Surf., A 452, 103 (2014).CrossRefGoogle Scholar
  13. 13.
    D. H. Kim, H. S. Hong, S. J. Kim, et al., J. Alloys Compd., Nos. 1–2, 259 (2004).CrossRefGoogle Scholar
  14. 14.
    C. J. Lin, Y. H. Liou, Y. Zhang, et al., Appl. Catal. B 127, 175 (2012).CrossRefGoogle Scholar
  15. 15.
    T. A. Sedneva, E. P. Lokshin, M. L. Belikov, and A. T. Belyaevskii, Inorg. Mater. 47, 1205 (2011).CrossRefGoogle Scholar
  16. 16.
    O. Oprea, C. D. Ghitulica, G. Voicu, B. S. Vasile, and A. Oprea, Rev. Rom. Mater. 43, 408 (2013).Google Scholar
  17. 17.
    A. M. Stoyanova, N. K. Ivanova, A. D. Bachvarova-Nedelcheva, and R. S. Iordanova, Bulgar. Chem. Commun 47, 330 (2015).Google Scholar
  18. 18.
    E. M. Bayan, T. G. Lupeiko, L. E. Pustovaya, and A. G. Fedorenko, Springer Proc. Phys. 175, 51 (2016).CrossRefGoogle Scholar
  19. 19.
    V. Stengl, S. Bakardjieva, and N. Murafa, Mater. Chem. Phys. 114, 217 (2009).CrossRefGoogle Scholar
  20. 20.
    GOST (State Standard) 4453-74 (1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. M. Bayan
    • 1
    Email author
  • T. G. Lupeiko
    • 1
  • L. E. Pustovaya
    • 2
  • A. A. Knyashchuk
    • 1
  • A. G. Fedorenko
    • 3
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Don State Technical UniversityRostov-on-DonRussia
  3. 3.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations