Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 3, pp 538–541 | Cite as

Interaction of vacancies on the Cu(001) surface

  • A. S. Prostnev
  • B. R. Shub
Surface Reactions

Abstract

The results of quantum chemical DFT calculations of energy barriers during the diffusion of vacancies on the Cu(001) surface at increased concentrations of vacant sites were described. The formation and destruction of dimers, trimers, and configuration of four vacancies were considered. For vacancies located at the neighboring sites of the surface lattice, there is effective attraction, which promotes the formation of vacancy clusters.

Keywords

surface diffusion diffusion coefficient molecular dynamics impurity atom density functional theory method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Flores, S. Junghans, and M. Wutting, Surf. Sci. 371, 14 (1997).CrossRefGoogle Scholar
  2. 2.
    A. K. Schmid, J. C. Hamilton, N. C. Bartelt, et al., Phys. Rev. Lett. 77, 2977 (1996).CrossRefGoogle Scholar
  3. 3.
    R. van Gastel, E. Somfai, W. van Saarloos, et al., Nature 408, 665 (2000).CrossRefGoogle Scholar
  4. 4.
    R. van Gastel, E. Somfai, S. B. van Albada, et al., Phys. Rev. Lett. 86, 1562 (2001).CrossRefGoogle Scholar
  5. 5.
    R. van Gastel, R. van Moere, H. J. W. Zandvliet, et al., Surf. Sci. 605, 1956 (2011).CrossRefGoogle Scholar
  6. 6.
    M. L. Grant, B. S. Swartzentruber, N. C. Bartelt, et al., Phys. Rev. Lett. 86, 4588 (2001).CrossRefGoogle Scholar
  7. 7.
    M. L. Anderson, N. C. Bartelt, and B. S. Swartzentruber, Surf. Sci. 538, 53 (2003).CrossRefGoogle Scholar
  8. 8.
    M. L. Anderson, M. J. D’Amato, P. J. Feibelman, et al., Phys. Rev. Lett. 90, 126102 (2003).CrossRefGoogle Scholar
  9. 9.
    P. Stoltze, J. Phys.: Condens. Matter 6, 9495 (1994).Google Scholar
  10. 10.
    M. Karini, N. Nomkowski, G. Vilali, et al., Phys. Rev. B 52, 5364 (1995).CrossRefGoogle Scholar
  11. 11.
    E. Kackell, F. Beechstedt, and G. Kresse, Phys. Rev. B 61, 4576 (2000).Google Scholar
  12. 12.
    G. Colizzi, G. Biddau, and V. Fiorentini, Phys. Rev. B 79, 165441 (2009).CrossRefGoogle Scholar
  13. 13.
    G. Boisvert and L. J. Lewis, Phys. Rev. B 56, 7543 (1997).CrossRefGoogle Scholar
  14. 14.
    M. J. A. Brummelhuis and H. J. Hilhorst, J. Stat. Phys. 53, 249 (1988).CrossRefGoogle Scholar
  15. 15.
    M. J. A. Brummelhuis and H. J. Hilhorst, Phys. A 156, 575 (1989).CrossRefGoogle Scholar
  16. 16.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 3, 602 (2009).CrossRefGoogle Scholar
  17. 17.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 5, 525 (2011).CrossRefGoogle Scholar
  18. 18.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 6, 65 (2012).CrossRefGoogle Scholar
  19. 19.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 10, 547 (2016).CrossRefGoogle Scholar
  20. 20.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 7, 568 (2013).CrossRefGoogle Scholar
  21. 21.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 8, 420 (2014).CrossRefGoogle Scholar
  22. 22.
    www.openmx-square.org.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations