Skip to main content
Log in

Micro-hot-spot model taking into account the temperature dependence of the laser pulse absorption efficiency factor

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

An improved model of the laser initiation of the explosive decomposition of energetic materials containing light-absorbing nanoparticles is investigated. The model takes into account how the light absorption efficiency factor changes with an increasing temperature. It is demonstrated that, as the temperature of an aluminum nanoparticle in pentaerythritol tetranitrate increases from 300 to 700 K, the light absorption efficiency factor increases by a factor of over 2. It is also shown that, for each particular nanoparticle radius in the 40–150 nm range, the temperature dependence of the light absorption efficiency factor over the relevant temperature range can be interpolated well by a second-order polynomial. Taking into account the variation of the efficiency of light absorption by the aluminum nanoparticle in the initiation of the explosive decomposition of pentaerythritol tetranitrate by a 12-ns-long neodymium laser pulse reduces the calculated critical energy density by a factor of 2.11 and decreases the optimum nanoparticle radius from 98 to 92 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Gerasimov, M. A. Ilyushin, and V. A. Kuz’min, Tech. Phys. Lett. 41, 338 (2015).

    Article  CAS  Google Scholar 

  2. M. T. Greenfield, S. D. McGrane, C. A. Bolme, et al., J. Phys. Chem. A 119, 4846 (2015). doi 10.1021/acs.jpca.5b02092

    Article  CAS  Google Scholar 

  3. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, and I. Yu. Liskov, Russ. Phys. J. 58, 1093 (2015).

    Article  CAS  Google Scholar 

  4. B. P. Aduev and D. R. Nurmukhametov, Russ. J. Phys. Chem. B 5, 290 (2011).

    Article  CAS  Google Scholar 

  5. B. P. Aduev, D. R. Nurmukhametov, I. Yu. Liskov, A. V. Kalenskii, M. V. Anan’eva, and A. A. Zvekov, Russ. J. Phys. Chem. B 9, 915 (2015).

    Article  CAS  Google Scholar 

  6. M. M. Kuklja, R. V. Tsyshevsky, and O. Sharia, J. Am. Chem. Soc. 136, 13289 (2014). doi 10.1021/ja506297e

    Article  CAS  Google Scholar 

  7. Y. Yang, Z. Sun, S. Wang, and D. Dlott, J. Phys. Chem. B 107, 4485 (2003). doi 10.1021/jp0269322

    Article  CAS  Google Scholar 

  8. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, A. A. Zvekov, and A. V. Kalenskii, Russ. J. Phys. Chem. B 7, 453 (2013).

    Article  CAS  Google Scholar 

  9. R. W. Conner and D. D. Dlott, J. Phys. Chem. C 116, 14737 (2012). doi 10.1021/jp303077f

    Article  CAS  Google Scholar 

  10. A. N. Zhigach, I. O. Leipunskii, A. N. Pivkina, N. V. Muravyev, K. A. Monogarov, M. L. Kuskov, E. S. Afanasenkova, N. G. Berezkina, P. A. Pshechenkov, and A. A. Bragin, Combust. Explos., Shock Waves 51, 100 (2015).

    Article  Google Scholar 

  11. E. I. Aleksandrov and V. P. Tsipilev, Combust. Explos., Shock Waves 20 (6), 690 (1984).

    Article  Google Scholar 

  12. V. I. Korepanov, V. M. Lisitsyn, V. I. Oleshko, and V. P. Tsipilev, Combust. Explos., Shock Waves 42 (1), 94 (2006).

    Article  Google Scholar 

  13. R. S. Burkina, E. Yu. Morozova, and V. P. Tsipilev, Combust. Explos., Shock Waves 47, 581 (2011).

    Article  Google Scholar 

  14. F. Bowden and A. Ioffe, Fast Reactions in Solids (Mir, Moscow, 1962; Academic, New York, 1958).

    Google Scholar 

  15. V. G. Kriger, V. G. Kalenskii, M. V. Anan’eva, and A. P. Borovikova, Combust. Explos., Shock Waves 44, 190 (2008).

    Article  Google Scholar 

  16. S. D. McGrane and D. S. Moore, Propellants, Explos., Pyrotech. 36, 327 (2011). doi 10.1002/prep.201100010

    Article  CAS  Google Scholar 

  17. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, I. Yu. Zykov, and B. P. Aduev, Combust. Explos., Shock Waves 48, 705 (2012).

    Article  Google Scholar 

  18. A. V. Kalenskii, A. A. Zvekov, M. V. Anan’eva, I. Yu. Zykov, V. G. Kriger, and B. P. Aduev, Combust. Explos., Shock Waves 50, 333 (2014).

    Article  Google Scholar 

  19. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, A. A. Zvekov, A. V. Kalenskii, A. P. Nikitin, and I. Yu. Liskov, Tech. Phys. 59, 1387 (2014).

    Article  CAS  Google Scholar 

  20. A. A. Zvekov, A. V. Kalenskii, B. P. Aduev, and M. V. Anan’eva, J. Appl. Spectrosc. 82, 213 (2015).

    Article  CAS  Google Scholar 

  21. V. Anan’eva, A. V. Kalenskii, A. A. Zvekov, et al., Nanosyst.: Phys., Chem., Math. 6, 628 (2015).

    Google Scholar 

  22. B. P. Aduev, M. V. Anan’eva, A. A. Zvekov, A. V. Kalenskii, V. G. Kriger, and A. P. Nikitin, Combust. Explos., Shock Waves 50, 704 (2014).

    Article  Google Scholar 

  23. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, I. Yu. Zykov, and A. P. Nikitin, Thermophys. Aeromech. 20, 367 (2013).

    Article  Google Scholar 

  24. A. V. Fedorov and A. V. Shulgin, Combust. Explos., Shock Waves 51, 333 (2015).

    Article  Google Scholar 

  25. Z. Yan, Ch. Zhang, W. Liu, et al., Sci. Rep. 6, 20251 (2016). doi 10.1038/srep20251

    Article  CAS  Google Scholar 

  26. V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, et al., Combust. Explos., Shock Waves 32 (4), 454 (1996).

    Article  Google Scholar 

  27. A. D. Zinchenko, A. I. Pogrebov, V. I. Tarzhanov, and B. B. Tokarev, Combust. Explos., Shock Waves 28 (5), 524 (1992).

    Article  Google Scholar 

  28. E. I. Aleksandrov, A. G. Voznyuk, and V. P. Tsipilev, Combust. Explos., Shock Waves 25 (1), 1 (1989).

    Article  Google Scholar 

  29. A. D. Zinchenko, V. I. Sdobnov, V. I. Tarzhanov, et al., Combust. Explos., Shock Waves 27 (2), 219 (1991).

    Article  Google Scholar 

  30. T. Ghambari and D. Dorranian, Opt. Spectrosc. 119, 838 (2015). doi 10.1134/S0030400X15110089

    Article  CAS  Google Scholar 

  31. M. H. Majles Ara, Z. Dehghani, R. Sahraei, et al., J. Quant. Spectrosc. Radiat. Transfer 113, 366 (2012).

    Article  CAS  Google Scholar 

  32. E. T. Denisov, The Rate Constants of Homolytic Liquid-Phase Reactions (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  33. L. P. Orlenko, Physics of Explosion (Fizmatlit, Moscow, 2004), Vol. 1 [in Russian].

    Google Scholar 

  34. A. V. Kalenskii, M. V. Anan’eva, A. A. Zvekov, and I. Yu. Zykov, Tech. Phys. 60, 437 (2015).

    Article  CAS  Google Scholar 

  35. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, M. V. Anan’eva, and A. P. Borovikova, Russ. J. Phys. Chem. B 3, 636 (2009).

    Article  Google Scholar 

  36. J. A. Brown and M. A. Zikry, Comput. Mech. 57, 611 (2016).

    Article  Google Scholar 

  37. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Combust. Explos., Shock Waves 50, 670 (2014).

    Article  Google Scholar 

  38. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Russ. J. Phys. Chem. B 8, 664 (2014).

    Article  CAS  Google Scholar 

  39. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Russ. J. Phys. Chem. B 8, 196 (2014).

    Article  CAS  Google Scholar 

  40. A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, M. V. Anan’eva, and B. P. Aduev, Opt. Spectrosc. 118, 978 (2015).

    Article  CAS  Google Scholar 

  41. K. Kolwas, A. Derkachova, and M. Shopa, J. Quant. Spectrosc. Radiat. Transfer 110, 1490 (2009).

    Article  CAS  Google Scholar 

  42. A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, and M. V. Anan’eva, Russ. Phys. J. 58, 1098 (2015).

    Article  CAS  Google Scholar 

  43. A. Yu. Panarin, A. V. Abakshonok, V. E. Agabekov, A. N. Eryomin, and S. N. Terekhov, J. Appl. Spectrosc. 81, 1030 (2014).

    Article  Google Scholar 

  44. I. K. Kikoin, Tables of Physical Values, The Handbook (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  45. A. N. Magunov, Laser Thermometry of Solids (Fizmatlit, Moscow, 2002; Cambridge Int. Science, Cambridge, 2006).

    Google Scholar 

  46. V. G. Kriger, A. V. Kalenskii, and A. A. Zvekov, Russ. J. Phys. Chem. B 6, 15 (2012).

    Article  CAS  Google Scholar 

  47. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, A. P. Borovikova, and E. A. Grishaeva, Combust. Explos., Shock Waves 48, 488 (2012).

    Article  Google Scholar 

  48. E. D. Aluker, A. S. Zverev, A. G. Krechetov, A. Yu. Mitrofanov, A. O. Terentyeva, and A. V. Tupitsyn, Russ. J. Phys. Chem. B 8, 687 (2014).

    Article  CAS  Google Scholar 

  49. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, and R. I. Furega, Combust. Explos., Shock Waves 51, 347 (2015).

    Article  Google Scholar 

  50. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, and I. Yu. Liskov, Russ._J. Phys. Chem. B 8, 852 (2014).

    Article  CAS  Google Scholar 

  51. V. P. Tsipilev, E. Yu. Morozova, and A. S. Skripin, Izv. Tomsk. Politekh. Univ. 317 (4), 149 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kalenskii.

Additional information

Original Russian Text © A.V. Kalenskii, A.A. Zvekov, A.P. Nikitin, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 4, pp. 43–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenskii, A.V., Zvekov, A.A. & Nikitin, A.P. Micro-hot-spot model taking into account the temperature dependence of the laser pulse absorption efficiency factor. Russ. J. Phys. Chem. B 11, 282–287 (2017). https://doi.org/10.1134/S199079311702018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311702018X

Keywords

Navigation