Skip to main content
Log in

Synthesis, characterization and gelation mechanism of L-phenylalanine-based dihydrazide derivative as excellent gelator

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A new organogelator, L-phenylalanine dihydrazide derivative (BOC-Phe-HdHz) has been designed, synthesized and characterized. In addition, the gelling behaviors of BOC-Phe-HdHz were studied. The organogelator has been shown to be capable of forming stable thermoreversible organogels in various organic solvents at extremely low concentrations (<3 wt %). The gel–sol phase transition temperatures (T GS) were determined as a function of gelator concentration and the corresponding enthalpies (ΔH g) were extracted. SEM revealed that the gelator self-assembled into different supramolecular network structures in different gels. FT-IR confirmed that hydrogen bonding and hydrophobic interaction were the driving forces for the supramolecular assembly process. XRD was measured in three different states of the gelator: solid powder, gel and xerogel. In addition, XRD and molecular modeling studies have been carried out and provided more information of the possible packing modes for the formation of organogelator aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Weiss, P. Terech, Molecular Gels: Materials with Self-Assembled Fibrillar Networks (Springer, Dordrecht, Netherlands, 2006)

    Book  Google Scholar 

  2. M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet, et al., Chem. Soc. Rev. 42, 7086 (2013).

    Article  CAS  Google Scholar 

  3. X. D. Yu, X. H. Cao, L. M. Chen, et al., Soft Matter 8, 3329 (2012).

    Article  CAS  Google Scholar 

  4. C. Wang, D. Q. Zhang, J. F. Xiang, et al., Langmuir 23, 9195 (2007).

    Article  CAS  Google Scholar 

  5. K. Lalitha, P. Jenifer, Y. S. Prasad, et al., RSC Adv. 4, 48433 (2014).

    Article  CAS  Google Scholar 

  6. I. V. Kumpanenko, A. V. Roschin, V. V. Usin, N. A. Ivanova, A. V. Bloshenko, A. E. Goncharova, and N. A. Sakharova, Russ. J. Phys. Chem. B 8, 720 (2014).

    Article  CAS  Google Scholar 

  7. S. Bhattacharya and Y. Krishnan-Ghosh, Chem. Commun. 2, 185 (2001).

    Article  Google Scholar 

  8. J. H. Jung, Y. Ono, K. Hanabusa, et al., J. Am. Chem. Soc. 122, 5008 (2000).

    Article  CAS  Google Scholar 

  9. L. N. Lucas, J. V. Esch, R. M. Kellogg, et al., Chem. Commun., 759 (2001).

  10. S. Mukherjee, G. R. Krishna, B. Mukhopadhyay, et al., Cryst. Eng. Comm. 17, 3345 (2015).

    Article  CAS  Google Scholar 

  11. Y. Jiang, F. Zeng, R. Gong, et al., Soft Matter 9, 7538 (2013).

    Article  CAS  Google Scholar 

  12. A. Hemamalini and T. M. Das, RSC Adv. 4, 41010 (2014).

    Article  CAS  Google Scholar 

  13. S. Maji, A. Das, P. K. Sarkar, et al., RSC Adv. 4, 44650 (2014).

    Article  CAS  Google Scholar 

  14. M. M. Piepenbrock, G. O. Lloyd, N. Clarke, et al., Chem. Rev. 110, 1960 (2010).

    Article  CAS  Google Scholar 

  15. D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 499 (2014).

    Article  CAS  Google Scholar 

  16. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, R. G. Kostyanovskii, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 5, 1019 (2011).

    Article  CAS  Google Scholar 

  17. M. George and R. G. Weiss, Acc. Chem. Res. 39, 489 (2006).

    Article  CAS  Google Scholar 

  18. J. V. Esch, Langmuir 25, 8392 (2009).

    Article  Google Scholar 

  19. P. F. Duan and M. H. Liu, Langmuir 25, 8706 (2009).

    Article  CAS  Google Scholar 

  20. K. G. Ragunathan and S. Bhattacharya, Chem. Phys. Lipids 77, 13 (1995).

    Article  CAS  Google Scholar 

  21. K. Hanabusa, R. Tanaka, M. Suzuki, et al., Adv. Mater. 9, 1095 (1997).

    Article  CAS  Google Scholar 

  22. D. Khatua and J. Dey, Langmuir 21, 109 (2005).

    Article  CAS  Google Scholar 

  23. M. Suzuki, T. Sato, H. Shirai, and K. Hanabusa, New J. Chem. 30, 1184 (2006).

    Article  CAS  Google Scholar 

  24. J. G. Hardy, A. R. Hirst, I. Ashworth, et al., Tetrahedron 63, 7397 (2007).

    Article  CAS  Google Scholar 

  25. A. Motulsky, M. Lafleur, A. C. Couffin-Hoarau, et al., Biomaterials 26, 6242 (2005).

    Article  CAS  Google Scholar 

  26. J. V. Esch, F. Schoonbeek, M. de Loos, et al., Chem.-Eur. J. 5, 937 (1999).

    Article  Google Scholar 

  27. P. Terech, C. Rossat, and F. Volino, Colloid Interf. Sci. 227, 363 (2000).

    Article  CAS  Google Scholar 

  28. A. Carré, P. le Grel, and M. Baudy-Floc’h, Tetrahedron Lett. 42, 1887 (2001).

    Article  Google Scholar 

  29. S. H. Seo and J. Y. Chang, Chem. Mater. 17, 3249 (2005).

    Article  CAS  Google Scholar 

  30. A. R. Hirst, D. K. Smith, M. C. Feiters, et al., Langmuir 20, 7070 (2004).

    Article  CAS  Google Scholar 

  31. S. K. Samanta, A. Pal, and S. Bhattacharya, Langmuir 25, 8567 (2009).

    Article  CAS  Google Scholar 

  32. H. Basit, A. Pal, S. Sen, et al., Chem.-Eur. J. 14, 6534 (2008).

    Article  CAS  Google Scholar 

  33. T. Kar, S. Debnath, D. Das, et al., Langmuir 25, 8639 (2009).

    Article  CAS  Google Scholar 

  34. G. Palui, A. Banerjee, Phys. Chem. B 112, 10107 (2008).

    Article  CAS  Google Scholar 

  35. W. D. Jang, D. L. Jiang, and T. Aida, J. Am. Chem. Soc. 122, 3232 (2000).

    Article  CAS  Google Scholar 

  36. W. D. Jang and T. Aida, Macromolecules 36, 8461 (2003).

    Article  CAS  Google Scholar 

  37. M. Suzuki, T. Sato, A. Kurose, et al., Tetrahedron Lett. 4, 2741 (2005).

    Article  Google Scholar 

  38. C. H. Tan, L. H. Su, R. Lu, et al., Mol. Liq. 124, 32 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. G. Sheng or C. S. Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Chu, N., Li, X.Y. et al. Synthesis, characterization and gelation mechanism of L-phenylalanine-based dihydrazide derivative as excellent gelator. Russ. J. Phys. Chem. B 11, 121–128 (2017). https://doi.org/10.1134/S1990793117010134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117010134

Keywords

Navigation