Advertisement

Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1256–1263 | Cite as

Partial and complete oxidation of brown coal in a supercritical water–oxygen fluid under conditions of counterflowing reactant streams

  • A. A. Vostrikov
  • D. Yu. Dubov
  • M. Ya. Sokol
  • O. N. Fedyaeva
Article

Abstract

The oxidation of brown coal continuously fed as part of a coal–water slurry into a counterflowing stream of a supercritical water–oxygen fluid at a temperature difference along the reactor axis of 673–873 K and a pressure of 30 MPa has been studied. It has been found that, in the case of a partial combustion of coal (under conditions of O2 deficiency), the yield of hydrogen-enriched products increases owing to heat evolution. Under conditions of excess O2, coal undergoes complete oxidation. In this case, the heat evolved per unit volume of furnace space is about 1.0 MW/m3. It has been shown that the heat consumed for the implementation of the process using external sources can be partially or completely compensated for by heat evolution during homogeneous and heterogeneous combustion coupled with coal thermolysis.

Keywords

brown coal coal–water slurry supercritical water–oxygen fluid combustion gasification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Morimoto, H. Nakagawa, and K. Miura, Energy Fuels 24, 3060 (2010).CrossRefGoogle Scholar
  2. 2.
    M. Sakaguchi, K. Laursen, H. Nakagawa, and K. Miura, Fuel Proc. Technol. 89, 391 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Morimoto, H. Nakagawa, and K. Miura, Energy Fuels 23, 4533 (2009).CrossRefGoogle Scholar
  4. 4.
    O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, M. Y. Sokol, L. S. Borisova, and V. A. Kashirtsev, Russ. J. Phys. Chem. B 6, 793 (2012).CrossRefGoogle Scholar
  5. 5.
    O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, and N. I. Fedorova, Russ. J. Phys. Chem. B 8, 1054 (2014).CrossRefGoogle Scholar
  6. 6.
    A. A. Vostrikov, O. N. Fedyaeva, D. Yu. Dubov, S. A. Psarov, and M. Ya. Sokol, Sverkhkrit. Fluidy Teor. Prakt. 2 (4), 70 (2007).Google Scholar
  7. 7.
    Y. Li, L. Guo, X. Zhang, H. Jin, and Y. Lu, Int. J. Hydrogen Energy 35, 3016 (2010).Google Scholar
  8. 8.
    S. Wang, Y. Guo, L. Wang, Y. Wang, D. Xu, and H. Ma, Fuel Proc. Technol. 92, 291 (2011).CrossRefGoogle Scholar
  9. 9.
    E. V. Ametistov, Principles of Modern Power Engineering (Mosk. Energet. Inst., Moscow, 2004) [in Russian].Google Scholar
  10. 10.
    B. G. Miller, Clean Coal Engineering Technology (Butterworth-Heinemann, Oxford, UK, 2010).Google Scholar
  11. 11.
    D. Zhang, Ultra-Supercritical Coal Power Plants. Materials, Technologies and Optimization (Woodhead, Cambridge, 2013).CrossRefGoogle Scholar
  12. 12.
    P. J. Reddy, Clean Coal Technologies for Power Generation (Taylor and Francis, London, UK, 2014).Google Scholar
  13. 13.
    A. A. Vostrikov, D. Yu. Dubov, and S. A. Psarov, Tech. Phys. Lett. 27, 847 (2001).CrossRefGoogle Scholar
  14. 14.
    A. A. Vostrikov, S. A. Psarov, D. Yu. Dubov, M. Ya. Sokol, and O. N. Fedyaeva, Sverkhkrit. Fluidy Teor. Prakt. 3 (4), 83 (2008).Google Scholar
  15. 15.
    A. A. Vostrikov, D. Yu. Dubov, S. A. Psarov, and M. Ya. Sokol, Combust. Explos., Shock Waves 44, 141 (2008).CrossRefGoogle Scholar
  16. 16.
    A. A. Vostrikov, O. N. Fedyaeva, D. Y. Dubov, S. A. Psarov, and M. Y. Sokol, Energy 36, 1948 (2011).CrossRefGoogle Scholar
  17. 17.
    M. D. Bermejo, M. J. Cocero, and F. Fernandez-Polanco, Fuel 83, 195 (2004).CrossRefGoogle Scholar
  18. 18.
    A. A. Aleksandrov and B. A. Grigor’ev, Tables of Thermophysical Properties of the Water and Steam (Mosk. Energet. Inst., Moscow, 2003) [in Russian].Google Scholar
  19. 19.
    A. A. Vostrikov, A. V. Shishkin, M. Ya. Sokol, D. Y. Dubov, and O. N. Fedyaeva, J. Supercrit. Fluids 107, 707 (2016).CrossRefGoogle Scholar
  20. 20.
    Perry’s Chemical Engineers’ Handbook, Ed. by R. H. Perry, D. W. Green, and J. O. Maloney, 7th ed. (McGraw-Hill, New York, 1997), p. 2340.Google Scholar
  21. 21.
    A. A. Vostrikov, O. N. Fedyaeva, S. A. Psarov, D. Yu. Dubov, and M. Ya. Sokol, Solid Fuel Chemistry, No. 5, 26 (2007).Google Scholar
  22. 22.
    C. Higman and S. Tam, Chem. Rev. 114, 1673 (2014).CrossRefGoogle Scholar
  23. 23.
    D. M. Khzmalyan and Ya. A. Kagan, Combustion Theory and Combustion Devices (Energiya, Moscow, 1976) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Vostrikov
    • 1
    • 2
  • D. Yu. Dubov
    • 1
    • 2
  • M. Ya. Sokol
    • 1
  • O. N. Fedyaeva
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations