Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1223–1228 | Cite as

Synthesis of carbon nanotubes/alumina composites in supercritical media

  • R. Yu. Novotortsev
  • S. A. Chernyak
  • S. V. Savilov
  • V. V. Lunin
Article
  • 28 Downloads

Abstract

Nanosized composites based on multiwall carbon nanotubes (CNTs) and Al2O3 have been obtained for the first time in supercritical (SC) media (water, hexane, and their mixture). For comparison, materials of the same net composition have been prepared by hydrothermal synthesis and sol–gel processing. The composites have been characterized by electron microscopy, X-ray diffraction, and thermal analysis. The structure of the materials synthesized in the SC media depends on the fluid composition. The most uniform composite containing alumina particles that are comparable in size to the CNT diameter and are stabilized on the carbon surface can be obtained in the SC mixture of hexane and water. When water and hexane are used separately, the formation of large alumina crystals on the CNT surface and contamination of the composite by the products of hexane pyrolysis and carbonization are, respectively, observed.

Keywords

supercritical water supercritical hexane carbon nanotubes alumina nanomaterials composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Galkin, V. G. Kostyuk, N. N. Kuznetsova, A. O. Terakulova, V. V. Lunin, and K. M. Polyakov, Kinet. Catal. 42, 154 (2001).CrossRefGoogle Scholar
  2. 2.
    V. I. Bogdan, A. E. Koklin, V. G. Krasovsky, V. V. Lunin, Ya. E. Sergeeva, A. A. Ivashechkin, and E. P. Feofilova, Russ. J. Phys. Chem. B 8, 1004 (2014).CrossRefGoogle Scholar
  3. 3.
    A. V. Lekar, O. V. Filonova, S. N. Borisenko, E. V. Maksimenko, E. V. Vetrova, N. I. Borisenko, and V. I. Minkin, Russ. J. Phys. Chem. B 7, 829 (2013).CrossRefGoogle Scholar
  4. 4.
    O. Rodriguez, C. Ortuno, S. Sirnal, J. Benedito, A. Femenia, and C. Rosselo, J. Supercrit. Fluids 94, 30 (2014).CrossRefGoogle Scholar
  5. 5.
    C. G. Pereira and M. A. A. Meireles, Food Bioprocess. Technol. 3, 340 (2010).CrossRefGoogle Scholar
  6. 6.
    E. L. G. Oliveira, A. J. D. Silvestre, and C. M. Silva, Chem. Eng. Res. Des. 89, 1104 (2011).CrossRefGoogle Scholar
  7. 7.
    H. Hayashi and K. J. Torii, Mater. Chem. 12, 3671 (2002).CrossRefGoogle Scholar
  8. 8.
    V. V. Lunin and A. A. Galkin, Russ. Chem. Rev. 74, 21 (2005).CrossRefGoogle Scholar
  9. 9.
    H. Hayashi and H. J. Yukiya, Materials 3, 3794 (2010).CrossRefGoogle Scholar
  10. 10.
    T. Adschiri, Y. Hakuta, and K. Arai, Ind. Eng. Chem. Res. 39, 4901 (2000).CrossRefGoogle Scholar
  11. 11.
    Y. Hakuta, T. Ajjri, and K. Arai, Kemikaru Enjiniyaringu 45, 621 (2000).Google Scholar
  12. 12.
    M. N. Danchevskaya, Yu. D. Ivakin, A. V. Maryashkin, and G. P. Muravieva, Russ. J. Phys. Chem. B 5, 1056 (2011).CrossRefGoogle Scholar
  13. 13.
    E. Lester, P. Blood, J. Denyer, D. Giddings, B. Azzopardi, and M. Poliakoff, J. Supercrit. Fluids 37, 209 (2006).CrossRefGoogle Scholar
  14. 14.
    C. da Porto, D. Decorti, and A. Natolino, J. Supercrit. Fluids 87, 1 (2014).CrossRefGoogle Scholar
  15. 15.
    C. Aymonier, A. Loppinet-Serani, H. Reveron, Y. Garrabos, and F. Cansell, J. Supercrit. Fluids 38, 242 (2006).CrossRefGoogle Scholar
  16. 16.
    A. Tavasoli, K. Sadagiani, F. Khorashe, A. A. Seifkordi, A. A. Rohani, and A. Nakhaeipour, Fuel Process. Technol. 89, 491 (2008).CrossRefGoogle Scholar
  17. 17.
    Y. Yan, X. Jia, and Y. Yang, Catal. Today 259, 292 (2016).CrossRefGoogle Scholar
  18. 18.
    H. Liu, L. Qin, X. Wang, C. Du, D. Sun, and X. Meng, Catal. Commun. 77, 47 (2016).CrossRefGoogle Scholar
  19. 19.
    F. Yang, C. Chi, S. Dong, C. Wang, X. Jia, L. Ren, Y. Zhang, L. Zhang, and Y. Li, Catal. Today 256, 186 (2015).CrossRefGoogle Scholar
  20. 20.
    X. Wang, Y. Zhao, X. Peng, J. Wang, C. Jing, and J. Tian, Mater. Sci. Eng. B 200, 99 (2015).CrossRefGoogle Scholar
  21. 21.
    An Zhonglie, Toda Masaya, and Ono Takahito, Carbon 75, 281 (2014).CrossRefGoogle Scholar
  22. 22.
    Sun Zhenyu, Zhang Xinrong, Han Buxing, Wu Yayan, An Guimin, Liu Zhimin, Miao Shiding, Miao Zhenjiang, Carbon 45, 2589 (2007).CrossRefGoogle Scholar
  23. 23.
    F. Inam, A. Heaton, P. Brown, T. Peijs, and M. Reece, Ceram. Int. 40, 511 (2014).CrossRefGoogle Scholar
  24. 24.
    G. Yamamoto, M. Omori, K. Yokomizo, and T. Hashida, Diamond Relat. Mater. 17, 1554 (2008).CrossRefGoogle Scholar
  25. 25.
    C. B. Mo, S. I. Cha, K. T. Kim, K. H. Lee, and S. H. Hong, Mater. Sci. Eng. A 395, 124 (2005).CrossRefGoogle Scholar
  26. 26.
    S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, and S. H. Hong, Scripta Mater. 53, 793 (2005).CrossRefGoogle Scholar
  27. 27.
    S. A. Chernyak, E. V. Suslova, A. V. Egorov, L. Lu, S. V. Savilov, and V. V. Lunin, Fuel Proc. Technol. 140, 267 (2015)CrossRefGoogle Scholar
  28. 27a.
    Md. Shajahan, Y. H. Mo, A. K. M. Fazle Kibria, M. J. Kim, and K. S. Nahm, Carbon 42, 2245 (2004).CrossRefGoogle Scholar
  29. 28.
    G. V. Stepanov, A. R. Rasulov, E. I. Milikhina, and G. M. Ataev, in Chemistry and Computer Simulation, Butler. Soobshch., No. 10 (Suppl.), 58 (2002).Google Scholar
  30. 29.
    I. A. Aliev and S. M. Rasulov, Sovrem. Naukoemk. Tekhnol., No. 3, 16 (2011).Google Scholar
  31. 30.
    M. P. Vukalovich, S. L. Rivkin, and P. A. Aleksandrov, Tables of Thermal and Physical Properties of Water and Steam (Izd. Standartov, Moscow, 1969) [in Russian].Google Scholar
  32. 31.
    A. V. Eletskii, Phys. Usp. 45, 369 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. Yu. Novotortsev
    • 1
  • S. A. Chernyak
    • 1
  • S. V. Savilov
    • 1
  • V. V. Lunin
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations