Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1248–1255 | Cite as

Gas dynamic model of the expansion of a supercritical carbon dioxide pulse jet: A self-similar solution

Article
  • 21 Downloads

Abstract

The unsteady-state isentropic expansion of an initially homogeneous spherical cloud of a van der Waals gas into a vacuum is considered as a dynamic part of the problem of modeling a real gas pulse jet. A self-similar solution of the gas dynamic equations is obtained. The parameters of the pulse jet (density and temperature) that simulate the conditions of a real experiment are calculated.

Keywords

supercritical carbon dioxide hypersonic pulse jet van der Waals gas isentropic expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. G. Korobeishchikov and A. E. Zarvin, Vestn. Novosib. Univ., Ser. Fiz. 1 (2), 29 (2006).Google Scholar
  2. 2.
    K. A. Tatarenko, A. V. Lazarev, and D. N. Trubnikov, Russ. J. Phys. Chem. B 9, 1048 (2015).CrossRefGoogle Scholar
  3. 3.
    K. A. Tatarenko, A. V. Lazerev, and D. N. Trubnikov, Sverkhkrit. Fluidy: Teor. Prakt. 10 (4), 1 (2015).Google Scholar
  4. 4.
    M. J. Cocero, A. Martin, F. Mattea, and S. J. Varona, Supercrit. Fluids 47, 546 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Dua and B. J. J. Cherayil, Chem. Phys. 111, 3274 (1999).Google Scholar
  6. 6.
    T. Sumi, N. Imazaki, and H. Sekino, Phys. Rev. E 79, 030801(R) (2009).CrossRefGoogle Scholar
  7. 7.
    G. Luna-Barsenas, J. C. Meredith, I. C. Sanches, and K. P. Johnston, J. Chem. Phys. 107, 10782 (1997).CrossRefGoogle Scholar
  8. 8.
    M. Lisal and I. J. Nezbeda, Chem. Phys. 119, 4026 (2003).Google Scholar
  9. 9.
    S. F. Chekmarev, Pulse Gas Flows in Supersonic Nozzles and Jets (Inst. Teplofiz. Sib. Otdel. AN, Novosibirsk, 1990) [in Russian].Google Scholar
  10. 10.
    O. Redlich and J. N. S. Kwong, Chem. Rev. 44, 233 (1949).CrossRefGoogle Scholar
  11. 11.
    R. W. Morris and E. A. Turek, ACS Symp. Ser. 300, 389 (1986).CrossRefGoogle Scholar
  12. 12.
    K. P. Stanyukovich, Unsteady Motion of Continuous Media (Nauka, Moscow, 1971; Pergamon, London, Oxford, Paris, New York, 1960).Google Scholar
  13. 13.
    A. D. Polyanin, V. F. Zaitsev, and A. I. Zhurov, Methods for the Solution of Nonlinear Equations of Mathematical Physics and Mechanics (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  14. 14.
    G. I. Barenblatt, Similarity, Self-Similarity and Intermediate Asymptotics (Gidrometeoizdat, Leningrad, 1978) [in Russian].Google Scholar
  15. 15.
    L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Nauka, Moscow, 1977; CRC, Boca Raton, FL, 1993).Google Scholar
  16. 16.
    G. I. Barenblatt, Scaling (Cambridge Univ. Press, New York, 2003).CrossRefGoogle Scholar
  17. 17.
    J. O. Valderrama, Ind. Eng. Chem. Res. 42, 1603 (2003).CrossRefGoogle Scholar
  18. 18.
    M. N. Berberan-Santos, E. N. Bodunov, and L. Pogliani, J. Math. Chem. 43, 1437 (2008).CrossRefGoogle Scholar
  19. 19.
    M. S. Cramer and L. M. Best, Phys. Fluids A 3, 219 (1991).CrossRefGoogle Scholar
  20. 20.
    G. H. Schnerr and P. Leidner, Phys. Fluids A 3, 2445 (1991).CrossRefGoogle Scholar
  21. 21.
    L. Sun, S. B. Kiselev, and J. F. Ely, Fluid Phase Equilib. 233, 204 (2005).CrossRefGoogle Scholar
  22. 22.
    H. Mirels and J. F. Mullen, AIAA J. 1, 596 (1963).CrossRefGoogle Scholar
  23. 23.
    A. V. Lazarev, N. N. Zastenker, D. N. Trubnikov, K.A. Tatarenko, and A. V. Pribytkov, Vestn. Mosk. Univ., Ser. Khim. 61 (6), 13 (2006).Google Scholar
  24. 24.
    A. V. Lazarev, N. N. Zastenker, D. N. Trubnikov, K. A. Tatarenko, and A. V. Pribytkov, Mosc. Univ. Chem. Bull. 62, 191 (2007).CrossRefGoogle Scholar
  25. 25.
    K. A. Tatarenko, Cand. Sci. (Chem.) Dissertation (2009).Google Scholar
  26. 26.
    K. A. Tatarenko, A. V. Lazerev, D. N. Trubnikov, and N. N. Zastenker, Physicochemical Kinetics in Gas Dynamics. http://www.chemphys.edu.ru/pdf/2008-11- 12-001.pdf.Google Scholar
  27. 27.
    H. P. Greenspan and D. S. Butler, J. Fluid Mech. 13, 101 (1962).CrossRefGoogle Scholar
  28. 28.
    H. W. Liepmann and A. Roshko, Elements of Gas Dynamics (Dover, New York, 2002).Google Scholar
  29. 29.
    V. G. Dulov and G. A. Luk’yanov, Gas Dynamics of Outflow Processes (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  30. 30.
    H. Ashkenas and S. F. Sherman, in Proceedings of the 4th International Symposium on Rarefied Gas Dynamics, 1966, Vol. 2, p. 84.Google Scholar
  31. 31.
    NIST Chemistry WebBook (Natl. Inst. Standards Technol., USA).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations