Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1229–1236 | Cite as

Impregnation of polymers with 2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl (TEMPONE) paramagnetic probe in sub- and supercritical CO2

  • E. N. Golubeva
  • O. I. Gromov
  • N. A. Chumakova
  • E. D. Feklichev
  • M. Ya. Mel’nikov
  • V. N. Bagratashvili


The spin probe method is used to study the impregnation of polycarbonate (PC) based on bisphenol A, polyethylene oxide (PEO), and crosslinked acrylamide–acrylic acid copolymer (PAA) with organic molecules in sub- and supercritical CO2 media. Electron spin resonance (EPR) data show that, at 196 bar and 307 K, 2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl (TEMPONE) paramagnetic spin probe molecules penetrate into the PC and PEO matrices, which are, respectively, in the glassy and elastic states under normal conditions. The degree of impregnation of PAA under these conditions is negligibly small. Estimates of the local concentration of probe molecules show that, in the PEO matrix, TEMPONE is distributed much more uniformly than in the PC matrix. Analysis of the effect of temperature on the shape of the EPR spectra of the radical in the polymer matrix shows that, under the same conditions, the mobility of TEMPONE molecules in the PEO matrix is much higher than in the PC matrix. The results suggest that the spin probe method is promising for studying the characteristics of macro- and micro-processes in polymer–supercritical fluid solvent–organic molecule ternary systems.


supercritical CO2 polymers impregnation spin probe method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Kemmere and T. Meyer, Supercritical Carbon Dioxide in Polymer Reaction Engineering (Wiley-VCH, Weinheim, 2005).CrossRefGoogle Scholar
  2. 2.
    F. M. Gumerov, A. N. Sabirzyanov, and G. I. Gumerova, Sub-and Supercritical Fluides in Polymer Processing (FEN, Kazan, 2000) [in Russian].Google Scholar
  3. 3.
    Yu. Kuwahara, M. Morita, T. Nagami, A. Tanaka, T. Iwanaga, K. Kumamaru, T. Sawada, M. Sasaki, M. Goto, and M. Sato, Jpn. J. Appl. Phys. 48, 06FF13 (2009).Google Scholar
  4. 4.
    A. Cooper, J. Adv. Mater. 15, 1049 (2003).CrossRefGoogle Scholar
  5. 5.
    Y. Kamiya, K. Mizoguchi, K. Terada, Yu. Fujiwara, and J.-S. Wang, Macromolecules 31, 472 (1998).CrossRefGoogle Scholar
  6. 6.
    S. Jordan and W. Korros, Macromolecules 28, 2228 (1995).CrossRefGoogle Scholar
  7. 7.
    O. S. Fleming, K. L. A. Chan, and S. G. Kazarian, Polymer 47, 4649 (2006).CrossRefGoogle Scholar
  8. 8.
    S. M. Howdle and V. N. Bagratashvili, Chem. Phys. Lett. 214, 214 (1993).CrossRefGoogle Scholar
  9. 9.
    A. R. Albunia, R. Graf, A. Grassi, G. Guerra, and H. W. Spiess, Macromolecules 42, 4929 (2009).CrossRefGoogle Scholar
  10. 10.
    C. Carlier and T. W. Randolph, AIChE J. 39, 876 (1993).CrossRefGoogle Scholar
  11. 11.
    Y. Tachikawa, K. Akiyama, C. Yokoyama, and S. Tero-Kubota, Chem. Phys. Lett. 376, 350 (2003).CrossRefGoogle Scholar
  12. 12.
    S. N. J. Batchelor, Phys. Chem. B 102, 615 (1998).CrossRefGoogle Scholar
  13. 13.
    A. Yu. Shaulov, N. I. Andreeva, A. G. Sklyarova, A. L. Buchachenko, N. S. Enikolopyan, and Yu. Kh. Shaulov, Sov. Phys. JETP 36, 82 (1972).Google Scholar
  14. 14.
    A. S. Kopylov, V. A. Radtsig, N. N. Glagolev, A. B. Solovieva, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 9, 998 (2015).CrossRefGoogle Scholar
  15. 15.
    E. J. Harbron, W. C. Bunyard, and M. D. E. Forbes, J. Polym. Sci., Part B: Polym. Phys. 43, 2097 (2005).CrossRefGoogle Scholar
  16. 16.
    C. S. Connon, R. F. Falk, and T. W. Randolph, Macromolecules 32, 17 (1999).CrossRefGoogle Scholar
  17. 17.
    RF Patent No. 147199 (2014)Google Scholar
  18. 18.
    I. Wertz and J. Bolton, Electron Spin Resonance (McGraw-Hill, New York, 1972).Google Scholar
  19. 19.
    A. Kh. Vorobiev and N. A. Chumakova, in Nitroxides–Theory, Experiment and Applications (InTech, Rijeka, Croatia, 2012).Google Scholar
  20. 20.
    A. I. Kokorin, in Nitroxides: Theory, Experiment, and Applications (InTech, Rijeka, Croatia, 2012).CrossRefGoogle Scholar
  21. 21.
    A. M. Vasserman and A. L. Kovarskii, Spin Labels and Probes in Physical Chemistry of Polymers (Nauka, Moscow, 1986) [in Russian].Google Scholar
  22. 22.
    D. A. Chernova, A. Kh. Vorobiev, J. Appl. Polym. Sci. 121, 102 (2011).CrossRefGoogle Scholar
  23. 23.
    D. A. Chernova and A. Kh. Vorobiev, J. Polym. Sci., Part B: Polym. Phys. 47, 563 (2009).CrossRefGoogle Scholar
  24. 24.
    O. H. Griffith, D. W. Cornell, and H. M. J. McConnell, Chem. Phys. 43, 2909 (1965).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. N. Golubeva
    • 1
  • O. I. Gromov
    • 1
  • N. A. Chumakova
    • 1
  • E. D. Feklichev
    • 1
  • M. Ya. Mel’nikov
    • 1
  • V. N. Bagratashvili
    • 1
    • 2
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Institute of Laser and Information TechnologiesRussian Academy of SciencesTroitsk (Moscow)Russia

Personalised recommendations