Advertisement

Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1237–1243 | Cite as

Conversion of tar in a counter flow of supercritical water at a temperature varying along the reactor axis

  • O. N. Fedyaeva
  • M. Ya. Sokol
  • A. A. Vostrikov
Article

Abstract

The article reports the conversion of tar (empirical formula CH1.47N0.01S0.007) continuously introduced into a counter flow of supercritical water (SCW) at 30 MPa in a tubular reactor with a temperature gradient along its vertical axis (450°C at the top and 650°C at the bottom). The yields of liquid products and volatile (C1–C9) hydrocarbons are 41.4 and 28.4%, respectively, relative to the weight of tar supplied into the reactor. Methane is the major component (40.5 mol %) of the volatile products, and the liquid products are dominated by oils (74.4 wt %). Deasphaltization and desulfurization of tar conversion products are observed. The average rate of water decomposition calculated from the quantity of O atoms in the conversion products is 0.24 g/min. Use of counter flows of the reactants in combination with a temperature gradient along the reactor axis affords a higher yield of low-boiling hydrocarbons than in the case of SCW pumping through a tar layer.

Keywords

tar supercritical water desulfurization deasphaltization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Akiya and P. E. Savage, Chem. Rev. 102, 2520 (2002).CrossRefGoogle Scholar
  2. 2.
    A. A. Galkin and V. V. Lunin, Russ. Chem. Rev. 74, 21 (2005).CrossRefGoogle Scholar
  3. 3.
    G. Brunner, J. Supercrit. Fluids 47, 373 (2009).CrossRefGoogle Scholar
  4. 4.
    J. Vilcaez, M. Watanabe, N. Watanabe, A. Kishita, and T. Adschiri, Fuel 102, 379 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Morimoto, Y. Sugimoto, S. Sato, and T. Takanohashi, Energy Fuels 28, 858 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Meng, H. Hu, Q. Znan, and M. Ding, Energy Fuels 20, 1157 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Morimoto, Y. Sugimoto, Y. Saotome, S. Sato, and T. J. Takanohashi, Supercrit. Fluids 55, 223 (2010).CrossRefGoogle Scholar
  8. 8.
    T. Sato, T. Adschiri, K. Arai, G. L. Rempel, and F. T. T. Ng, Fuel 82, 1231 (2003).CrossRefGoogle Scholar
  9. 9.
    V. V. Saveliev and A. K. Golovko, Russ. J. Phys. Chem. B 4, 1207 (2010).CrossRefGoogle Scholar
  10. 10.
    V. R. Antipenko, I. V. Goncharov, Y. V. Rokosov, and L. S. Borisova, Russ. J. Phys. Chem. B 5, 1195 (2011).CrossRefGoogle Scholar
  11. 11.
    O. N. Fedyaeva, V. R. Antipenko, and A. A. J. Vostrikov, Supercrit. Fluids 88, 105 (2014).CrossRefGoogle Scholar
  12. 12.
    O. N. Fedyaeva, A. A. Vostrikov, M. Ya. Sokol, and N. I. Fedorova, Russ. J. Phys. Chem. B 7, 820 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. Liu, F. Bai, C.-C. Zhu, P.-Q. Yuan, Z.-M. Cheng, and W.-K. Yuan, Fuel Process. Technol. 106, 281 (2013).CrossRefGoogle Scholar
  14. 14.
    O. N. Fedyaeva, A. V. Shatrova, and A. A. Vostrikov, J. Supercrit. Fluids 95, 437 (2014).CrossRefGoogle Scholar
  15. 15.
    I. V. Kozhevnikov, A. L. Nuzhdin, and O. N. Martyanov, J. Supercrit. Fluids 55, 217 (2010).CrossRefGoogle Scholar
  16. 16.
    M. Morimoto, S. Sato, and T. Takanohashi, J. Supercrit. Fluids 68, 113 (2012).CrossRefGoogle Scholar
  17. 17.
    R. O. Caniaz and C. Erkey, Chem. Eng. Res. Des. 92, 1845 (2014).CrossRefGoogle Scholar
  18. 18.
    N. Li, B. Yan, and X.-M. Xiao, Energies 8, 8962 (2015).CrossRefGoogle Scholar
  19. 19.
    O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, M. Y. Sokol, L. S. Borisova, and V. A. Kashirtsev, Russ. J. Phys. Chem. B 6, 793 (2012).CrossRefGoogle Scholar
  20. 20.
    Modern Methods of Oil Research, The Reference Book, Ed. by A. I. Bogomolov, M. B. Temyanko, and L. I. Khotyntseva (Nedra, Leningrad, 1984) [in Russian].Google Scholar
  21. 21.
    J. Yu and S. Eser, Ind. Eng. Chem. Res. 36, 574 (1997).CrossRefGoogle Scholar
  22. 22.
    L. Gao, Y. Liu, L. Wen, W. Huang, X. Mu, B. Zong, H. Fan, and H. Buxing, AIChE J. 56, 3226 (2010).CrossRefGoogle Scholar
  23. 23.
    A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Pet. Chem. 52, 221 (2012).CrossRefGoogle Scholar
  24. 24.
    A. R. Katritzky, R. A. Barcock, M. Balasubramanian, J. V. Greenhill, M. Siskin, and W. N. Olmstead, Energy Fuels 8, 498 (1994).CrossRefGoogle Scholar
  25. 25.
    O. M. Ogunsola and N. Berkovitz, Fuel 74, 1485 (1995).CrossRefGoogle Scholar
  26. 26.
    P. R. Patwardhan, M. T. Timko, C. A. Class, R. E. Bonomi, Y. Kida, H. H. Hernandez, J. W. Tester, and W. H. Green, Energy Fuels 27, 6108 (2013).CrossRefGoogle Scholar
  27. 27.
    E. W. Lemmon, M. O. McLinden, and D. G. Freid, Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database No. 69, Ed. by P. J. Linstrom and W. G. Mallard (Natl. Inst. Standards Technol., Gaithersburg, MD, 20899). http://webbook.nist.gov/chemistry/fluid/.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. N. Fedyaeva
    • 1
  • M. Ya. Sokol
    • 1
  • A. A. Vostrikov
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations