Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1216–1222 | Cite as

The solubility of synthetic asymmetric allyl disulfides in subcritical and supercritical media

  • D. Yu. Zalepugin
  • N. A. Tilkunova
  • I. V. Chernyshova
  • M. I. Vlasov
Article
  • 16 Downloads

Abstract

The solubility of two synthetic asymmetric allyl disulfides, allyl 8-quinolyl disulfide and allyl benzothiazol-2-yl disulfide, in subcritical Freon R22 and Freon R410a, as well as supercritical carbon dioxide, at a temperature of 40°C and a pressure of 200 bar is determined by a dynamic flow method. It is shown that Freon R22 is a promising solvent for practical applications of allyl disulfides.

Keywords

asymmetric allyl disulfides Freon supercritical carbon dioxide solubility dynamic flow method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Yu. Zalepugin, N. A. Tilkunova, I. V. Chernyshova, M. I. Vlasov, and A. L. Mulyukin, Russ. J. Phys. Chem. B 9, 1059 (2015).CrossRefGoogle Scholar
  2. 2.
    D. Yu. Zalepugin, N. A. Tilkunova, Yu. S. Yashin, I. V. Chernyshova, V. S. Mishin, and A. L. Mulyukin, Russ. J. Phys. Chem. B 4, 1103 (2010).CrossRefGoogle Scholar
  3. 3.
    D. Yu. Zalepugin, N. A. Til’kunova, I. V. Chernyshova, and A. L. Mulyukin, Russ. J. Phys. Chem. B 7, 843 (2013).CrossRefGoogle Scholar
  4. 4.
    E. N. Antonov and V. K. Popov, Russ. J. Phys. Chem. B 8, 980 (2014).CrossRefGoogle Scholar
  5. 5.
    E. N. Antonov, S. A. Minaeva, and V. K. Popov, Russ. J. Phys. Chem. B 7, 849 (2013).CrossRefGoogle Scholar
  6. 6.
    I. V. Kuznetsova, I. I. Gilmutdinov, I. M. Gilmutdinov, A. A. Mukhamadiev, and A. N. Sabirzyanov, Russ. J. Phys. Chem. B 7, 814 (2013).CrossRefGoogle Scholar
  7. 7.
    C. Jiang, Q. Pan, and Z. Pan, J. Supercrit. Fluids 12, 1 (1998).CrossRefGoogle Scholar
  8. 8.
    A. A. Sagdeev, R. F. Gallyamov, R. A. Kasonov, A. A. Petukhov, F. M. Gumerov, and F. R. Gabitov, Vestn. Kazan. Tekhnol. Univ., No. 1, 32 (2008).Google Scholar
  9. 9.
    A. A. Zakharov, T. R. Bilalov, and F. M. Gumerov, Sverkhkrit. Fluidy: Teor. Prakt. 10 (2), 60 (2015).Google Scholar
  10. 10.
    A. T. Tukhvatova, R. A. Kayumov, V. F. Khairutdinov, A. A. Sagdeev, N. N. Sarimov, F. M. Gumerov, F. R. Gabitov, and S. I. Volfson, Russ. J. Phys. Chem. B 4, 1252 (2010).CrossRefGoogle Scholar
  11. 11.
    L. Danielski, L. Campos, F. V. Bresciani, H. Hense, R. A. Yunes, and R. S. Ferreira, Chem. Eng. Process. Process Intensificat. 46, 99 (2007).CrossRefGoogle Scholar
  12. 12.
    H. Li, D. Jia, Q. Zhu, and B. Shen, Fluid Phase Equilib. 392, 95 (2015).CrossRefGoogle Scholar
  13. 13.
    R. S. Alwi, T. Tanaka, and K. Tamura, J. Chem. Thermodyn. 74, 119 (2014).CrossRefGoogle Scholar
  14. 14.
    M. Ardjmand, M. Mirzajanzadeh, and F. Zabini, Chin. J. Chem. Eng. 22, 549 (2014).CrossRefGoogle Scholar
  15. 15.
    D. A. Newman, T. A. Hoefing, R. R. Beitle, E. J. Beckman, and R. M. Enick, J. Supercrit. Fluids 6, 205 (1993).CrossRefGoogle Scholar
  16. 16.
    V. A. Kamachev, A. Yu. Shadrin, A. A. Murzin, and D. N. Shafikov, Sverkhkrit. Fluidy: Teor. Prakt. 2 (3), 48 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. Yu. Zalepugin
    • 1
  • N. A. Tilkunova
    • 1
  • I. V. Chernyshova
    • 1
  • M. I. Vlasov
    • 1
  1. 1.Federal State Unitary Enterprise State Plant of Medicinal PreparationsMoscowRussia

Personalised recommendations