Advertisement

Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1195–1200 | Cite as

Formation of porous matrices from lactide and ε-caprolactone copolymers in supercritical carbon dioxide medium

  • P. S. Timashev
  • N. N. Vorobieva
  • N. V. Minaev
  • Yu. A. Piskun
  • I. V. Vasilenko
  • S. G. Lakeev
  • S. V. Kostyuk
  • V. V. Lunin
  • V. N. Bagratashvili
Article

Abstract

A series of lactide and ε-caprolactone copolymers containing 4–24 mol % of ε-caprolactone with 20- to 30-kDa molecular weights are synthesized. Based on them, porous materials are produced by foaming in supercritical carbon dioxide. The pore size was shown to decrease with increasing ε-caprolactone content in copolymer, while the porosity of the entire sample was not altered. The resulting pore size also decreases if 7 wt % polyethylene glycol is added to the initial monomer mixture. The Young’s modulus of the porous samples decreases with increasing ε-caprolactone content and when polyethylene glycol is added.

Keywords

polymer foaming supercritical carbon dioxide lactide and ε-caprolactone copolymers mechanical characteristics of porous polymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Pinto, M. Dumon, M. A. Rodriguez-Perez, R. Garci, and Ch. Dietz, J. Phys. Chem. C 118, 4656 (2014).CrossRefGoogle Scholar
  2. 2.
    X. Hongqi, L. Wei, L. Dongbo, and X. Xingyao, Anal. Lett. 47, 1888 (2014).CrossRefGoogle Scholar
  3. 3.
    A. V. Ivanov, S. V. Lysenko, S. V. Baranova, A. V. Sungurov, T. N. Zangelov, and E. A. Karakhanov, Microporous Mesoporous Mater. 91, 254 (2006).CrossRefGoogle Scholar
  4. 4.
    J. A. R. Ruiz, M. Vincent, J.-F. Agassant, T. Tarik Sadik, C. Pillon, and Ch. Carrot, Polym. Eng. Sci. 55, 2018 (2015).CrossRefGoogle Scholar
  5. 5.
    R. W. Reeve, G. T. Burstein, and K. R. Williams, J. Power Sources 128, 1 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Yang, P. A. Mrau, C. S. Pai, O. Nalamasu, E. Reichmanis, J. C. Pai, Y. S. Obeng, J. Seputro, E. K. Lin, H. J. Lee, J. N. Sun, and D. W. Gidley, Chem. Mater. 14, 369 (2002).CrossRefGoogle Scholar
  7. 7.
    A. S. Zalusky, R. Olayo-Valles, J. H. Wolf, and M. A. Hillmyer, J. Am. Chem Soc. 124, 12761 (2002).CrossRefGoogle Scholar
  8. 8.
    J. H. Wolf and M. A. Hillmyer, Langmuir 19, 6553 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Srinivasarao, D. Collings, A. Philips, and S. Patel, Science 292, 79 (2001).CrossRefGoogle Scholar
  10. 10.
    F. Schler, D. Schamel, A. Salonen, W. Drenckhan, M. D. Gilchrist, and C. S. Angew, Chem. Int. Ed. 51, 2213 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Siripurapu, Y. J. Gay, J. R. Royer, J. M. DeSimone, R. J. Spontak, and S. A. Khan, Polymer 43, 5511 (2002).CrossRefGoogle Scholar
  12. 12.
    A. R. C. Duartea, V. E. Santoa, A. Alvesa, S. S. Silva, J. Moreira-Silvaa, T. H. Silva, A. P. Marquesa, R. A. Sousaa, M. E. Gomesa, J. F. Manoa, and R. L. Reisa, J. Supercrit. Fluids 79, 177 (2013).CrossRefGoogle Scholar
  13. 13.
    S. E. Bogorodskii, T. S. Zarkhina, E. V. Kuznetsov, S.A. Minaeva, V. K. Popov, A. B. Solov’eva, and P. S. Timashev, Russ. J. Phys. Chem. B 8, 924 (2014).CrossRefGoogle Scholar
  14. 14.
    K. V. Zaitsev, S. S. Karlov, A. A. Selina, Yu. F. Oprunenko, A. V. Churakov, B. Neumuller, J. A. K. Howard, and G. S. Zaitseva, Eur. J. Inorg. Chem. 10, 1987 (2006).CrossRefGoogle Scholar
  15. 15.
    V. K. Popov, P. S. Timashev, C. Khoudl, A. Nailor, S. L. Kotova, N. A. Erina, A. B. Solov’eva, and V. N. Bagratashvili, Sverkhkrit. Fluidy: Teor. Prakt. 1 (2), 23 (2006).Google Scholar
  16. 16.
    W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
  17. 17.
    Yu. A. Piskun et al., J. Polym Sci., Part A 48, 1230 (2010).CrossRefGoogle Scholar
  18. 18.
    K. V. Zaitsev et al., J. Polym. Sci., Part A 52, 1237 (2014).CrossRefGoogle Scholar
  19. 19.
    Yu. A. Piskun, I. V. Vasilenko, K. V. Zaitsev, S. S. Karlov, G. S. Zaitseva, L. V. Gaponik, and S. V. Kostyuk, Russ. Chem. Bull. 64, 181 (2015).CrossRefGoogle Scholar
  20. 20.
    D. Dakshinamoorthy and F. Peruch, J. Polym. Sci., Part A 50, 2161 (2012).CrossRefGoogle Scholar
  21. 21.
    D. Pappalardo, L. Annunziata, and C. Pellecchia, Macromolecules 42, 6056 (2009).CrossRefGoogle Scholar
  22. 22.
    P. S. Timashev, L. I. Krotova, D. A. Lemenovskii, and V. K. Popov, Russ. J. Phys. Chem. B 4, 1158 (2010).CrossRefGoogle Scholar
  23. 23.
    H. M. Woods, M. M. C. G. Silva, C. Nouvel, K. M. Shakesheff, and S. M. Howdle, J. Mater. Chem. 14, 1663 (2004).CrossRefGoogle Scholar
  24. 24.
    V. P. Shastri, I. Martin, and R. Langer, Proc. Natl. Acad. Sci. 97, 1970 (2000).CrossRefGoogle Scholar
  25. 25.
    A. Naylor, P. S. Timashev, A. B. Solov’eva, N. A. Erina, S. L. Kotova, A. J. Busby, V. K. Popov, and S. M. Howdle, Adv. Mater. 20, 575 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • P. S. Timashev
    • 1
  • N. N. Vorobieva
    • 1
  • N. V. Minaev
    • 1
  • Yu. A. Piskun
    • 2
  • I. V. Vasilenko
    • 2
  • S. G. Lakeev
    • 3
  • S. V. Kostyuk
    • 2
  • V. V. Lunin
    • 4
  • V. N. Bagratashvili
    • 4
  1. 1.Institute of Laser and Information TechnologiesRussian Academy of SciencesTroitsk, MoscowRussia
  2. 2.Research Institute for Physical Chemical ProblemsBelarusian State UniversityMinskBelarus
  3. 3.Karpov Scientific Research Institute of Physics and ChemistryMoscowRussia
  4. 4.Chemistry DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations