Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1201–1210 | Cite as

Micronization of levofloxacin by supercritical antisolvent precipitation

  • E. V. Kudryashova
  • I. M. Deygen
  • K. V. Sukhoverkov
  • L. Yu. Filatova
  • N. L. Klyachko
  • A. M. Vorobei
  • O. I. Pokrovskiy
  • K. B. Ustinovich
  • O. O. Parenago
  • E. N. Antonov
  • A. G. Dunaev
  • L. I. Krotova
  • V. K. Popov
  • A. M. Egorov
Article

Abstract

The process of micronization of levofloxacin (LF, an antibacterial agent of the fluoroquinolone group) by the supercritical antisolvent precipitation technique (SAS) was investigated. It was shown that LF particles of different sizes (from 1 to 10 μm) and of various morphologies (from thin plates to elongated parallelepipeds) can be produced depending on the type of solvent used for conducting micronization. Investigation of the micronized LF preparations using the methods of IR-Fourier spectroscopy, Raman scattering, and circular dichroism showed that the LF micronization caused neither changes in its chemical structure nor racemization. Micronization of LF significantly affects the rate of its dissolution in model systems exhibiting effects dependent on the type of the solvent used for micronization. For example, the highest rate of dissolution at pH 4 was observed for LF preparations micronized with the help of chlorohydrocarbons. It was shown that the rate of dissolution of all micronized LF preparations was higher by 15–30% in comparison with the initial LF, which likely was related to the changes in the degree of crystallinity/amorphousness, as well as of morphologies of microparticles formed in the SAS process.

Keywords

levofloxacin SCF-micronization supercritical antisolvent precipitation (SAS) FTIR and Raman spectroscopy CD spectroscopy solubility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Bagratashvili, C. E. Bogorodskii, A. N. Konovalov, A. P. Kubyshkin, A. A. Novitskii, V. K. Popov, K. Upton, and S. M. Khoudl, Sverkhkrit. Fluidy: Teor. Prakt. 2 (1), 53 (2007).Google Scholar
  2. 2.
    E. N. Antonov, S. E. Bogorodskii, B. M. Fel’dman, E. A. Markvicheva, L. D. Rumsh, and V. K. Popov, Sverkhkrit. Fluidy: Teor. Prakt. 3 (1), 34 (2008).Google Scholar
  3. 3.
    V. N. Bagratashvili, A. M. Egorov, L. I. Krotova, A. V. Mironov, V. Ya. Panchenko, O. O. Parenago, V.K. Popov, I. A. Revelsky, P. S. Timashev, and S. I. Tsypina, Russ. J. Phys. Chem. B 6, 804 (2012).CrossRefGoogle Scholar
  4. 4.
    V. G. Slutskii, V. N. Bagratashvili, L. I. Krotova, G. V. Mishakov, V. K. Popov, and S. A. Tsyganov, Sverkhkrit. Fluidy: Teor. Prakt. 7 (4), 88 (2012).Google Scholar
  5. 5.
    L. I. Krotova, A. V. Mironov, and V. K. Popov, Russ. J. Phys. Chem. B 7, 932 (2013).CrossRefGoogle Scholar
  6. 6.
    S. E. Bogorodskii, L. I. Krotova, S. A. Minaeva, S. V. Kursakov, V. K. Popov, and V. I. Sevast’yanov, Russ. J. Phys. Chem. B 9, 1011 (2015).CrossRefGoogle Scholar
  7. 7.
    V. N. Bagratashvili, S. E. Bogorodskii, A. M. Egorov, L. I. Krotova, V. K. Popov, and V. I. Sevast’yanov, Sverkhkrit. Fluidy: Teor. Prakt. 10 (3), 26 (2015).Google Scholar
  8. 8.
    A. M. Vorobei, K. B. Ustinovich, O. I. Pokrovskiy, O. O. Parenago, and V. V. Lunin, Russ. J. Phys. Chem. B 9, 1103 (2015).CrossRefGoogle Scholar
  9. 9.
    A. M. Vorobei, O. I. Pokrovskii, K. B. Ustinovich, L. I. Krotova, O. O. Parenago, and V. V. Lunin, Sverkhkrit. Fluidy: Teor. Prakt. 10 (2), 51 (2015).Google Scholar
  10. 10.
    L. Padrela, M. Rodrigues, S. P. Velaga, et al., Eur. J. Pharm. Sci. 38, 9 (2009).CrossRefGoogle Scholar
  11. 11.
    Patent WO 2005/105293 A1 (2005).Google Scholar
  12. 12.
    V. P. Yakovlev, Lechashii Vrach, No. 2 (2001). http://www.lvrach.ru/2001/02/4528577/.Google Scholar
  13. 13.
    E. V. Kudryashova and K. V. Sukhoverkov, Anal. Bioanal. Chem. 408 (4), 1183 (2015).CrossRefGoogle Scholar
  14. 14.
    I. M. Deygen, A. M. Egorov, and E. V. Kudryashova, Mosc. Univ. Chem. Bull. 71, 1 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Sahoo, C. K. Chakraborti, S. C. Mishra, U. N. Nanda, and S. Naik, J. Pharm. Res. 4, 1129 (2011).Google Scholar
  16. 16.
    V. L. Dorofeev, Khim.-Farm. Zh. 38 (12), 45 (2004).Google Scholar
  17. 17.
    C. Bin and Zh. Shao, Chin. J. Pharm. Anal. 31, 1715 (2011).Google Scholar
  18. 18.
    V. L. Dorofeev, I. V. Titov, I. Yu. Kochin, and A. P. Arzamastsev, Khim.-Farm. Zh. 38 (5), 35 (2004).Google Scholar
  19. 19.
    M. H. Abraham, A. Ibrahim, and A. M. Zissimos, J. Chromatogr., A 1037, 29 (2004).CrossRefGoogle Scholar
  20. 20.
    C. Mintz, PhD Thesis (Univ. North Texas, 2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. V. Kudryashova
    • 1
  • I. M. Deygen
    • 1
  • K. V. Sukhoverkov
    • 1
  • L. Yu. Filatova
    • 1
  • N. L. Klyachko
    • 1
  • A. M. Vorobei
    • 1
    • 2
  • O. I. Pokrovskiy
    • 2
  • K. B. Ustinovich
    • 1
    • 2
  • O. O. Parenago
    • 1
    • 2
  • E. N. Antonov
    • 3
  • A. G. Dunaev
    • 3
  • L. I. Krotova
    • 3
  • V. K. Popov
    • 3
  • A. M. Egorov
    • 1
    • 4
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Laser and Information TechnologiesRussian Academy of SciencesTroitsk, MoscowRussia
  4. 4.Russian Medical Academy of Postgraduate EducationMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations