Skip to main content
Log in

Supercontinuum generation under filamentation driven by intense femtosecond pulses in supercritical xenon and carbon dioxide

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

It is found that supercritical fluids are a unique source of multioctave supercontinuum radiation, which is generated upon filamentation of an intense femtosecond laser pulse. If the laser pulse power significantly exceeds the critical power of self-focusing, then a supercontinuum with a width of three and a half spectral octaves (from 350 to 2000 nm) is generated in supercritical xenon. The red wing of supercontinuum generated in supercritical carbon dioxide has the form of a plateau in the range from 1400 to 1900 nm, while the blue wing of the spectrum is almost completely attenuated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  CAS  Google Scholar 

  2. D. A. Lemenovskii and V. N. Bagratashvili, Ross. Khim. Zh. 43, 93 (1999).

    Google Scholar 

  3. V. N. Bagratashvili, K. P. Bestemyanov, V. M. Gordiyenko, A. N. Konovalov, V. K. Popov, and S. I. Tsypina, Proc. SPIE—Int. Soc. Opt. Eng. 4705, 129 (2002).

    Google Scholar 

  4. A. A. Novitskii, M. Khou, E. Peres, D. Ke, W. Wu, V. N. Bagratashvili, and M. Polyakoff, Sverkhkrit. Fluidy: Teor. Prakt. 4 (1), 49 (2009).

    Google Scholar 

  5. M. V. Avdeev, V. N. Bagratashvili, A. N. Konovalov, V. K. Popov, S. I. Tsypina, M. V. Sokolova, D. Ke, M. Poliakoff, V. Z. Wu, B. Wang, and B. Kh. Han, Sverkhkrit. Fluidy: Teor. Prakt. 2 (1), 28 (2007).

    Google Scholar 

  6. T. Fuji, T. Horio, and T. Suzuki, Opt. Lett. 32, 2481 (2007).

    Article  Google Scholar 

  7. F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 1 (2010).

    Google Scholar 

  8. I. I. Korel, B. N. Nyushkov, V. I. Denisov, V. S. Pivtsov, N. A. Koliada, A. A. Sysoliatin, S. M. Ignatovich, N. L. Kvashnin, M. N. Skvortsov, and S. N. Bagayev, Laser Phys. 24, 074012 (2014).

    Article  Google Scholar 

  9. M. Azhar, N. Y. Joly, J. C. Travers, and P. S. Russell, Appl. Phys. B 112, 457 (2013).

    Article  CAS  Google Scholar 

  10. NIST Database. http://webbook.nist.gov/.

  11. A. Borzsonyi, Z. Heiner, A. P. Kovacs, M. P. Kalashnikov, and K. Osvay, Opt. Express 18, 25847 (2010).

    Article  CAS  Google Scholar 

  12. J. W. Hahn and E. S. Lee, J. Opt. Soc. Am. B 12, 021 (1995).

    Article  Google Scholar 

  13. K. Lim, M. Durand, M. Baudelet, and M. Richardson, Sci. Rep. 4, 7217 (2014).

    Article  Google Scholar 

  14. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, New J. Phys. 17, 053010 (2015).

    Article  Google Scholar 

  15. A. Major, F. Yoshino, I. Nikolakakos, J. S. Atchison, and P. W. Smith, Opt. Lett. 29, 602 (2004).

    Article  Google Scholar 

  16. S. Coen, A. H. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, J. Opt. Soc. Am. B 19, 753 (2002).

    Article  CAS  Google Scholar 

  17. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, Appl. Phys. B 76, 215 (2003).

    Article  CAS  Google Scholar 

  18. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, Phys. Rev. Lett. 57, 2268 (1986).

    Article  CAS  Google Scholar 

  19. C. M. Bowden and S. L. Chin, Opt. Commun. 202, 189 (2002).

    Article  Google Scholar 

  20. X.-L. Liu, X. Lu, X. Liu, T.-T. Xi, F. Liu, J.-L. Ma, J. Zhang, Opt. Express 18, 26007 (2010).

    Article  CAS  Google Scholar 

  21. D. Kartashov, S. Alisauskas, A. Pugzlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Bejot, J. Kasparian, J.-P. Wolf, and A. Baltuska, Opt. Lett. 37, 3456 (2012).

    Article  CAS  Google Scholar 

  22. A. S. Lea, S. R. Higgins, K. G. Knauss, and K. M. Rosso, Rev. Sci. Instrum. 82, 043709 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Mareev.

Additional information

Original Russian Text © V.N. Bagratashvili, V.M. Gordienko, E.I. Mareev, N.V. Minaev, A.V. Ragulskaya, F.V. Potemkin, 2015, published in Sverkhkriticheskie Flyuidy. Teoriya i Praktika, 2015, Vol. 10, No. 4, pp. 67–72.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagratashvili, V.N., Gordienko, V.M., Mareev, E.I. et al. Supercontinuum generation under filamentation driven by intense femtosecond pulses in supercritical xenon and carbon dioxide. Russ. J. Phys. Chem. B 10, 1211–1215 (2016). https://doi.org/10.1134/S1990793116080042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116080042

Keywords

Navigation