Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1211–1215 | Cite as

Supercontinuum generation under filamentation driven by intense femtosecond pulses in supercritical xenon and carbon dioxide

  • V. N. Bagratashvili
  • V. M. Gordienko
  • E. I. Mareev
  • N. V. Minaev
  • A. V. Ragulskaya
  • F. V. Potemkin
Article
  • 20 Downloads

Abstract

It is found that supercritical fluids are a unique source of multioctave supercontinuum radiation, which is generated upon filamentation of an intense femtosecond laser pulse. If the laser pulse power significantly exceeds the critical power of self-focusing, then a supercontinuum with a width of three and a half spectral octaves (from 350 to 2000 nm) is generated in supercritical xenon. The red wing of supercontinuum generated in supercritical carbon dioxide has the form of a plateau in the range from 1400 to 1900 nm, while the blue wing of the spectrum is almost completely attenuated.

Keywords

supercritical fluids femtosecond filamentation generation of supercontinuum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).CrossRefGoogle Scholar
  2. 2.
    D. A. Lemenovskii and V. N. Bagratashvili, Ross. Khim. Zh. 43, 93 (1999).Google Scholar
  3. 3.
    V. N. Bagratashvili, K. P. Bestemyanov, V. M. Gordiyenko, A. N. Konovalov, V. K. Popov, and S. I. Tsypina, Proc. SPIE—Int. Soc. Opt. Eng. 4705, 129 (2002).Google Scholar
  4. 4.
    A. A. Novitskii, M. Khou, E. Peres, D. Ke, W. Wu, V. N. Bagratashvili, and M. Polyakoff, Sverkhkrit. Fluidy: Teor. Prakt. 4 (1), 49 (2009).Google Scholar
  5. 5.
    M. V. Avdeev, V. N. Bagratashvili, A. N. Konovalov, V. K. Popov, S. I. Tsypina, M. V. Sokolova, D. Ke, M. Poliakoff, V. Z. Wu, B. Wang, and B. Kh. Han, Sverkhkrit. Fluidy: Teor. Prakt. 2 (1), 28 (2007).Google Scholar
  6. 6.
    T. Fuji, T. Horio, and T. Suzuki, Opt. Lett. 32, 2481 (2007).CrossRefGoogle Scholar
  7. 7.
    F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 1 (2010).Google Scholar
  8. 8.
    I. I. Korel, B. N. Nyushkov, V. I. Denisov, V. S. Pivtsov, N. A. Koliada, A. A. Sysoliatin, S. M. Ignatovich, N. L. Kvashnin, M. N. Skvortsov, and S. N. Bagayev, Laser Phys. 24, 074012 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Azhar, N. Y. Joly, J. C. Travers, and P. S. Russell, Appl. Phys. B 112, 457 (2013).CrossRefGoogle Scholar
  10. 10.
    NIST Database. http://webbook.nist.gov/.Google Scholar
  11. 11.
    A. Borzsonyi, Z. Heiner, A. P. Kovacs, M. P. Kalashnikov, and K. Osvay, Opt. Express 18, 25847 (2010).CrossRefGoogle Scholar
  12. 12.
    J. W. Hahn and E. S. Lee, J. Opt. Soc. Am. B 12, 021 (1995).CrossRefGoogle Scholar
  13. 13.
    K. Lim, M. Durand, M. Baudelet, and M. Richardson, Sci. Rep. 4, 7217 (2014).CrossRefGoogle Scholar
  14. 14.
    F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, New J. Phys. 17, 053010 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Major, F. Yoshino, I. Nikolakakos, J. S. Atchison, and P. W. Smith, Opt. Lett. 29, 602 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Coen, A. H. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, J. Opt. Soc. Am. B 19, 753 (2002).CrossRefGoogle Scholar
  17. 17.
    W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, Appl. Phys. B 76, 215 (2003).CrossRefGoogle Scholar
  18. 18.
    P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, Phys. Rev. Lett. 57, 2268 (1986).CrossRefGoogle Scholar
  19. 19.
    C. M. Bowden and S. L. Chin, Opt. Commun. 202, 189 (2002).CrossRefGoogle Scholar
  20. 20.
    X.-L. Liu, X. Lu, X. Liu, T.-T. Xi, F. Liu, J.-L. Ma, J. Zhang, Opt. Express 18, 26007 (2010).CrossRefGoogle Scholar
  21. 21.
    D. Kartashov, S. Alisauskas, A. Pugzlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Bejot, J. Kasparian, J.-P. Wolf, and A. Baltuska, Opt. Lett. 37, 3456 (2012).CrossRefGoogle Scholar
  22. 22.
    A. S. Lea, S. R. Higgins, K. G. Knauss, and K. M. Rosso, Rev. Sci. Instrum. 82, 043709 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. N. Bagratashvili
    • 1
  • V. M. Gordienko
    • 2
  • E. I. Mareev
    • 2
  • N. V. Minaev
    • 3
  • A. V. Ragulskaya
    • 2
  • F. V. Potemkin
    • 2
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Faculty of Physics, International Laser CenterMoscow State UniversityMoscowRussia
  3. 3.Institute of Photon Technologies, Research Center “Crystallography and Photinics”Russian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations