Advertisement

Russian Journal of Physical Chemistry B

, Volume 10, Issue 8, pp 1180–1190 | Cite as

Some thermodynamic processes of anthracite–carbon dioxide mixture in supercritical fluid state

  • Ameer Abed Jaddoa
  • A. A. Zakharov
  • T. R. Bilalov
  • R. R. Nakipov
  • I. R. Gabitov
  • Z. I. Zaripov
  • F. M. Gumerov
Article
  • 27 Downloads

Abstract

In the context of the development of the catalyst regeneration procedure via supercritical fluid CO2 extraction, some thermodynamic properties of the anthracene–carbon dioxide mixture in supercritical fluid state have been studied. Data on anthracene solubility in pure and modified (dimethyl sulfoxide, 5 wt %) supercritical carbon dioxide (SC–CO2), the heat capacity of anthracene and its mixtures with carbon dioxide, and the heat of solution of anthracene in SC–CO2 are presented. Anthracene solubility in SC–CO2 is described satisfactorily using the Peng–Robinson equation of state.

Keywords

anthracene supercritical carbon dioxide solubility heat capacity thermal effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ch. Satterfield, Heterogeneous Catalysis in Practice (McGraw-Hill, New York, 1980; Khimiya, Moscow, 1976).Google Scholar
  2. 2.
    R. M. Masagutov, B. F. Morozov, and B. I. Kutepov, Catalyst Regeneration in Petroleum Refining and Petroleum Chemistry (Khimiya, Moscow, 1987) [in Russian].Google Scholar
  3. 3.
    V. M. Kurganov, B. E. Kushner, and A. V. Agafonov, Gas-Air Regeneration of Hydrotreating Catalysts (TsNIITEneftekhim, Moscow, 1973) [in Russian].Google Scholar
  4. 4.
    F. M. Gumerov, A. A. Sagdeev, T. R. Bilalov, B. Le Neindr, F. R. Gabitov, Kh. E. Kharlampidi, Z. I. Zaripov, G. I. Fedorov, R. S. Yarullin, I. A. Yakushev, R. F. Gallyamov, A. T. Galimova, N. N. Sarimov, K. A. Sagdeev, Ameer Abed Jaddoa, and B. T. Burganov, Catalysts: Regeneration Using Supercritical Fluide SO 2-Extraction Process (Brig, Kazan, 2015) [in Russian].Google Scholar
  5. 5.
    F. M. Gumerov, A. N. Sabirzyanov, and G. I. Gumerova, Sub-and Super Critical Fluids in Processes of Polymers Processing (Fen, Kazan, 2000) [in Russian].Google Scholar
  6. 6.
    T. R. Bilalov and F. M. Gumerov, The Manufacturing Processes and Catalyst Regeneration: Thermodynamic Basis of Production Processes and Regeneration of Palladium Catalysts Using Supercritical Carbon Dioxide (LAP LAMBERT Academic, Dudweiler Landstr., Germany, 2011).Google Scholar
  7. 7.
    J. H. Hildebrand, A. D. Duschak, A. H. Foster, and C. W. Beebe, J. Am. Chem. Soc. 39, 2293 (1917).CrossRefGoogle Scholar
  8. 8.
    H. M. Huffman, G. S. Parks, and M. Barmore, J. Am. Chem. Soc. 53, 3876 (1931).CrossRefGoogle Scholar
  9. 9.
    P. Goursot, H. L. Girdhar, and E. F. Westrum, Jr., J. Phys. Chem 74, 2538 (1970).CrossRefGoogle Scholar
  10. 10.
    R. G. Ross, P. Andersson, and G. Bäckström, Mol. Phys. 38, 527 (1979).CrossRefGoogle Scholar
  11. 11.
    M. Radomska and R. Radomski, Thermochim. Acta 40, 405 (1980).CrossRefGoogle Scholar
  12. 12.
    N. A. Silin, Yu. E. Sheludyak, L. Ya. Kashporov, L. A. Malinin, and V. N. Tsalkov, Thermophysical Properties of Propellant Components (Khimmash, Moscow, 1992) [in Russian].Google Scholar
  13. 13.
    N. Durupt, A. Aoulmi, M. Bouroukba, and M. Rogalski, Thermochim. Acta 260, 87 (1995).CrossRefGoogle Scholar
  14. 14.
    G. Liessmann, W. Schmidt, and S. Reiffarth, Data Compilation of the Saechsische. Recommended Thermophysical Data (Olefinwerke Boehlen, Germany, 1995), p. 46.Google Scholar
  15. 15.
    A. Rojas and E. Orozco, Thermochim. Acta 405, 93 (2003).CrossRefGoogle Scholar
  16. 16.
    G. T. Hefter, R. P. T. Tomkins, K. Aim, and M. Fermeglia, The Experimental Determination of Solubilities, Vol. 6 (Wiley, Chichester, 2003), Chap. 5.1. doi 10.1002/0470867833.ch13CrossRefGoogle Scholar
  17. 17.
    M. Kojima, M. Tosaka, E. Funami, K. Nitta, M. Ohshima, and S. Kohjiya, J. Supercrit. Fluids 35, 175 (2005).CrossRefGoogle Scholar
  18. 18.
    J. R. Kim and J. B. Kyong, Bull. Korean Chem. Soc. 16, 432 (1995).Google Scholar
  19. 19.
    C. Sanchez and R. H. Lacombe, J. Phys. Chem 80, 2352 (1976).CrossRefGoogle Scholar
  20. 20.
    C. Sanchez and R. H. Lacombe, Macromolecules 11, 1145 (1978).CrossRefGoogle Scholar
  21. 21.
    J. S. Vrentad and C. M. Vrentas, Macromolecules 24, 2404 (1991).CrossRefGoogle Scholar
  22. 22.
    D. Koschel and J.-Y. Coxam, Fluid Phase Equilib. 247, 107 (2006).CrossRefGoogle Scholar
  23. 23.
    D. Koschel, J.-Y. Coxam, and V. Majer, Ind. Eng. Chem. Res. 46, 1421 (2007).CrossRefGoogle Scholar
  24. 24.
    C. Mathonat, V. Majer, A. Mather, and J.-P. Grolier, J. Fluid Phase Equilib. 40, 171 (1997).CrossRefGoogle Scholar
  25. 25.
    F. M. Gumerov, Hung Nam Truong, F. N. Shamsetdinov, Z. I. Zaripov, F. R. Gabitov, and B. Le Neindre, in Caffeine: Consumption, Side Effects and Impact on Performance and Mood: Monograph (Nova Science, New York, 2014), p. 139.Google Scholar
  26. 26.
    Ameer Abed Jaddoa, A. A. Zakharov, T. R. Bilalov, F. R. Gabitov, F. M. Gumerov, and R. S. Yarullin, in Proceedings of the 14th Russian Conference with International Participation on Thermophysical Properties of Substances, Kazan, 2014, p. 51.Google Scholar
  27. 27.
    A. A. Zakharov, Abed Ameer Jaddoa, T. R. Bilalov, and F. M. Gumerov, Int. J. Anal. Mass Spectrom. Chromatogr. 2, 113 (2014).CrossRefGoogle Scholar
  28. 28.
    R. A. Usmanov, R. R. Gabitov, Sh. A. Biktashev, F. N. Shamsetdinov, F. M. Gumerov, F. R. Gabitov, Z. I. Zaripov, R. A. Gazizov, R. S. Yarullin, and I. A. Yakushev, Russ. J. Phys. Chem. 5, 1216 (2011).CrossRefGoogle Scholar
  29. 29.
    F. N. Shamsetdinov, Z. I. Zaripov, et al., in Liquid Fuels: Types, Properties and Production, Monograph (Nova Science, New York, 2012), Chap. 3.Google Scholar
  30. 30.
    I. A. Vasil’ev and V. M. Petrov, The Thermodynamic Properties of Oxygen-Containing Organic Compounds (Khimiya, Leningrad, 1984) [in Russian].Google Scholar
  31. 31.
    Ya. M. Naziev, A. N. Shakhverdiev, M. M. Bashirov, and N. S. Aliev, Teplofiz. Vys. Temp. 32, 936 (1994).Google Scholar
  32. 32.
    Z. I. Zaripov, S. A. Burtsev, A. V. Gavrilov, S. A. Bulaev, and G. Kh. Mukhamedzyanov, Vestn. Kazan. Tekhnol. Univ., Nos. 1–2, 208 (2002).Google Scholar
  33. 33.
    E. Calvet and H. Pratt, Recent Progress in Microcalorimetry (Pergamon, Elmsford, New York, 1963; Inostr. Liter., Moscow, 1963).Google Scholar
  34. 34.
    Z. I. Zaripov, S. A. Burtsev, A. V. Gavrilov, and G. Kh. Mukhamedzyanov, Theor. Found. Chem. Eng. 36, 400 (2002).CrossRefGoogle Scholar
  35. 35.
    Z. I. Zaripov, S. A. Burtsev, A. V. Gavrilov, and G. Kh. Mukhamedzyanov, High Temp. 42, 282 (2004).CrossRefGoogle Scholar
  36. 36.
    Z. I. Zaripov, S. A. Burtsev, S. A. Bulaev, and G. Kh. Mukhamedzyanov, J. Phys. Chem. 78, 697 (2004).Google Scholar
  37. 37.
    Z. I. Zaripov and G. Kh. Mukhamedzyanov, Thermophysical Properties of Liquids and Solutions, Monography (Kazan. Gos. Tekhnol. Univ., Kazan, 2008) [in Russian].Google Scholar
  38. 38.
    R. Burk and P. Kruus, Can. J. Chem. Eng. 70, 403 (1992).CrossRefGoogle Scholar
  39. 39.
    I. Goodarznia and F. Esmaeilzadeh, J. Chem. Eng. Data 47, 333 (2002).CrossRefGoogle Scholar
  40. 40.
    E. Kosal and G. D. Holder, J. Chem. Eng. Data 2 (32), 148 (1987).CrossRefGoogle Scholar
  41. 41.
    Q. Li, Z. Zhang, C. Zhong, Y. Liu, Q. Zhou, Fluid Phase Equilib. 207, 183 (2003).CrossRefGoogle Scholar
  42. 42.
    T. W. Zerda, B. Wiegand, and J. Jonas, J. Chem. Eng. Data 3, 274 (1986).CrossRefGoogle Scholar
  43. 43.
    M. Mukhopadhyay and G. V. R. Rao, Ind. Eng. Chem. Res. 32, 922 (1993).CrossRefGoogle Scholar
  44. 44.
    G. Liessmann, W. Schmidt, and S. Reiffarth, in Data Compilation of Saechsische Olefinwerke (Boehlen, Germany, 1995), p. 46.Google Scholar
  45. 45.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).Google Scholar
  46. 46.
    K. A. Sagdeev, A. A. Sagdeev, F. M. Gumerov, and R. F. Gallyamov, Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol. 57 (8), 64 (2014).Google Scholar
  47. 47.
    T. R. Bilalov, F. M. Gumerov, F. R. Gabitov, Kh. E. Kharlampidi, G. I. Fedorov, A. A. Sagdeev, R. S. Yarullin, and I. A. Yakushev, Russ. J. Phys. Chem. B 3, 1093 (2009).CrossRefGoogle Scholar
  48. 48.
    A. A. Sagdeev, R. F. Gallyamov, A. T. Galimova, and K. A. Sagdeev, Int. J. Anal. Mass Spectrom. Chromatogr. 2, 1 (2014).CrossRefGoogle Scholar
  49. 49.
    A. T. Galimova, A. A. Sagdeev, and F. M. Gumerov, Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol. 56 (6), 65 (2013).Google Scholar
  50. 50.
    Chemical Encyclopedy, Ed. by I. L. Knunyants (Sov. Entsiklopedia, Moscow, 1988), Vol. 1 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Ameer Abed Jaddoa
    • 1
    • 2
  • A. A. Zakharov
    • 1
  • T. R. Bilalov
    • 1
  • R. R. Nakipov
    • 1
  • I. R. Gabitov
    • 1
  • Z. I. Zaripov
    • 1
  • F. M. Gumerov
    • 1
  1. 1.Kazan National Research Technological UniversityKazan, TatarstanRussia
  2. 2.University of TechnologyBaghdadIraq

Personalised recommendations