Russian Journal of Physical Chemistry B

, Volume 10, Issue 7, pp 1092–1098 | Cite as

Solubility of ammonium palmitate in supercritical carbon dioxide



The solubility of ammonium palmitate in supercritical carbon dioxide is studied in the dynamic regime at 308.15–333.15 K and 10.0–35.0 MPa. Experimental data are described in the framework of the Peng–Robinson equation of state.


ammonium palmitate supercritical carbon dioxide solubility dynamic regime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Gumerov, A. N. Sabirzyanov, and G. I. Gumerova, Sub-and Supercritical Fluids in Polymer Refining Processes (Fen, Kazan, 2000) [in Russian].Google Scholar
  2. 2.
    A. K. Chernyshev, F. M. Gumerov, G. N. Tsvetinskii, R. S. Yarullin, S. V. Ivanov, B. V. Levin, M. I. Shafran, I. F. Zhilin, A. G. Beskov, and K. A. Chernyshev, Carbon Dioxide. Properties, Catching (Production), Application (Galleya-print, Moscow, 2013) [in Russian].Google Scholar
  3. 3.
    F. M. Gumerov, A. A. Sagdeev, T. R. Bilalov, et al., Catalysts: Regeneration Using Supercritical Fluid CO 2-Extration Process (Brig, Kazan’, 2015) [in Russian].Google Scholar
  4. 4.
    T.R. Bilalov and F. M. Gumerov, The Manufacturing Processes and Catalyst Regeneration. Thermodynamic Basis of Production Processes and Regeneration of Palladium Catalysts Using Supercritical Carbon Dioxide (LAP LAMBERT Academic, Dudweiler Landstr., Germany, 2011).Google Scholar
  5. 5.
    V. K. Popov, Doctoral (Chem.) Dissertation (Mosc. State Univ., 2013).Google Scholar
  6. 6.
    A. A. Zakharov, J. Ameer Abed, T. R. Bilalov, and F. M. Gumerov, Int. J. Anal. Mass Spectrom. Chromatogr. 2, 113 (2014).CrossRefGoogle Scholar
  7. 7.
    F. M. Gumerov, M. I. Farakhov, V. F. Khayrutdinov, F. R. Gabitov, Z. I. Zaripov, I. S. Khabriyev, and T. R. Akhmetzyanov, Am. J. Anal. Chem. 5, 945 (2014).CrossRefGoogle Scholar
  8. 8.
    L. N. Nikitin, M. O. Gallyamov, E. E. Said-Galiev, A. R. Khokhlov, and V. M. Buznik, Zh. Ross. Khim. Obshch. D. I. Mendeleeva 52 (3), 56 (2008).Google Scholar
  9. 9.
    K. Mishima, H. Yokota, T. Kato, T. Suetsugu, X. Wei, K. Irie, K. Mishima, and M. Fujiwara, Adv. Mater. Phys. Chem., No. 2, 181 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Iwai, Y. Koga, H. Maruyama, and Y. Arai, J. Chem. Eng. Data 38, 506 (1993).CrossRefGoogle Scholar
  11. 11.
    Y. Koga, Y. Iwai, Y. Hata, M. Yamamoto, and Y. Arai, Fluid Phase Equilib. 125, 115 (1996).CrossRefGoogle Scholar
  12. 12.
    P. V. Novitskii and I. A. Zograf, Estimation of Errors in Experimental Results (Energoatomizdat, Leningrad, 1985).Google Scholar
  13. 13.
    A. I. Zaidel, Errors in Measuring Physical Quantities (Nauka, Leningrad, 1984) [in Russian].Google Scholar
  14. 14.
    M. Mukhopadhyay and G. V. R. Rao, Ind. Eng. Chem. Res, No. 32, 922 (1993).CrossRefGoogle Scholar
  15. 15.
    N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases (Fizmatgiz, Moscow, 1963) [in Russian].Google Scholar
  16. 16.
    R. Dohrn and G. Brunner, in Proceedings of the 3rd International Symposium on Supercritical Fluids, Strasburg, France, 1994, Vol. 1, p. 241.Google Scholar
  17. 17.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Zakharov
    • 1
  • T. R. Bilalov
    • 1
  • F. M. Gumerov
    • 1
  1. 1.Federal Public Budgetary Educational Institution of Higher Education Kazan National Research Technological UniversityKazanRussia

Personalised recommendations