Russian Journal of Physical Chemistry B

, Volume 10, Issue 7, pp 1072–1077

Effect of solvent type and concentration on size and morphology of arbidol microparticles obtained by supercritical antisolvent precipitation

  • A. M. Vorobei
  • O. I. Pokrovskiy
  • K. B. Ustinovich
  • L. I. Krotova
  • O. O. Parenago
  • V. V. Lunin
Article
  • 15 Downloads

Abstract

The capability of arbidol microparticle preparation by supercritical antisolvent (SAS) precipitation was demonstrated. A nonmonotonic dependence of the average particle size on the concentration was found, while the position of the minimum is dependent on the type of solvent used. It is possible to prepare Arbidol particles of various morphology and size from several microns to several hundred microns depending on the conditions.

Keywords

supercritical carbon dioxide SCF micronization supercritical antisolvent precipitation Arbidol bioavailability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. S. Boriskin, I. A. Leneva, E.-I. Pecheur, and S. J. Polyak, Curr. Med. Chem. 15, 997 (2008).CrossRefGoogle Scholar
  2. 2.
    M.-Y. Liu, S. Wang, W.-F. Yao, H. Wu, S.-N. Meng, and Min-Jie Wei, Clin. Ther. 31, 784 (2009).CrossRefGoogle Scholar
  3. 3.
    Y. S. Boriskin, E.-I. Pecheur, and S. J. Polyak, Virol. J. 3, 56 (2006).CrossRefGoogle Scholar
  4. 4.
    M. J. Brooks, E. I. Burtseva, P. J. Ellery, G. M. Marsh, A. M. Lew, A. N. Slepushkin, S. M. Crowe, and G. A. Tannock, J. Med. Virol. 84, 170 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Yu. Eropkin, M. V. Solovskii, M. Yu. Smirnova, et al., Khim.-Farm. Zh. 43 (10), 27 (2009).Google Scholar
  6. 6.
    Arbidol. Pharmacopeia art. FS 42-0216-07 instead of art. GF-XII, Pt. 1.Google Scholar
  7. 7.
    RF Patent No. 2394618 (2008).Google Scholar
  8. 8.
    RF Patent No. 2475255 (2011).Google Scholar
  9. 9.
    RF Patent No. 2411942 (2009).Google Scholar
  10. 10.
    M. J. Cocero, A. Martin, F. Mattea, and S. J. Varona, Supercrit. Fluids 47, 546 (2008).CrossRefGoogle Scholar
  11. 11.
    A. M. Vorobei, K. B. Ustinovich, O. I. Pokrovskiy, O. O. Parenago, and V. V. Lunin, Russ. J. Phys. Chem. B 9, 1103 (2015).CrossRefGoogle Scholar
  12. 12.
    V. N. Bagratashvili, A. M. Egorov, L. I. Krotova, A.V. Mironov, V. Ya. Panchenko, O. O. Parenago, V. K. Popov, I. A. Revelsky, P. S. Timashev, and S. I. Tsypina, Russ. J. Phys. Chem. B 6, 804 (2012).CrossRefGoogle Scholar
  13. 13.
    L. Padrela, M. Rodrigues, S. P. Velaga, et al., Eur. J. Pharm. Sci. 38, 9 (2009).CrossRefGoogle Scholar
  14. 14.
    WO Patent No. 2005/105293 A1 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Vorobei
    • 1
    • 2
  • O. I. Pokrovskiy
    • 1
  • K. B. Ustinovich
    • 1
  • L. I. Krotova
    • 3
  • O. O. Parenago
    • 1
    • 2
  • V. V. Lunin
    • 1
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Institute of Laser and Information TechnologiesRussian Academy of SciencesMoscowRussia

Personalised recommendations