Russian Journal of Physical Chemistry B

, Volume 10, Issue 7, pp 1062–1071 | Cite as

Determination of natural aromatic acids using supercritical fluid chromatography

  • D. V. Ovchinnikov
  • D. S. Kosyakov
  • N. V. Ul’yanovskii
  • K. G. Bogolitsyn
  • D. I. Falev
  • O. I. Pokrovskiy


Derivatives of benzoic and cinnamic acids are secondary metabolites of plants, widely distributed in nature and possessing biological activity. Supercritical fluid chromatography (SFC) is shown to provide a high performance separation of nine most important representatives of this class of compounds with selectivity, dramatically different from the reversed-phase high-performance liquid chromatography. The retention and chromatographic separation parameters of analytes for four stationary phases of different nature are compared and the effect of supercritical fluid parameters and the composition of the mobile phase onto the chromatographic separation are analyzed. The optimal separation is found to be achieved when using a silica-based sorbent with 2-ethylpyridinium linked groups. The proposed approach for determination of the above-mentioned compounds is based on the combination of chromatographic separation with multiwavelength spectrophotometric detection and provides the detection limits in the range of 13.0–51.3 μg/L and the analysis duration about 2.5 min. The approach is successfully tested on real objects, such as different kinds of wine.


supercritical fluid chromatography SCF natural aromatic acids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Saxena, J. Saxena, and A. Pradhan, Int. J. Pharm. Sci. Rev. Res. 16, 130 (2012).Google Scholar
  2. 2.
    C. J. Dillard and J. B. German, J. Sci. Food Agricult. 80, 1744 (2000).CrossRefGoogle Scholar
  3. 3.
    I. Biskup, I. Golonka, A. Gamian, and Z. Sroka, Postepy Hig. Med. Dosw. 67, 958 (2013).CrossRefGoogle Scholar
  4. 4.
    J. Prousek, Pure Appl. Chem. 79, 2325 (2007).CrossRefGoogle Scholar
  5. 5.
    C. W. I. Haminiuk, M. S. V. Plata-Oviedo, G. Mattos, S. T. Carpes, and I. G. Branco, J. Food Sci. Technol. 51, 2862 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Schieber, P. Keller, and R. Carle, J. Chromatogr. A 910, 265 (2001).CrossRefGoogle Scholar
  7. 7.
    S. Gomez-Alonso, E. Garcia-Romero, and I. Hermosin-Gutierrez, J. Food Compos. Anal. 20, 618 (2007).CrossRefGoogle Scholar
  8. 8.
    L. Onofrejova, J. Vasickova, B. Klejdus, P. Stratil, L. Misurcova, S. Kracmar, J. Kopecky, and J. Vacek, J. Pharmaceut. Biomed. Anal. 51, 464 (2010).CrossRefGoogle Scholar
  9. 9.
    P. Mattila and J. Kumpulainen, J. Agric. Food Chem. 50, 3660 (2002).CrossRefGoogle Scholar
  10. 10.
    W. Kukula-Koch, N. Aligiannis, M. Halabalaki, A. Skaltsounis, K. Glowniak, and E. Kalpoutzakis, Food Chem. 138, 406 (2013).CrossRefGoogle Scholar
  11. 11.
    H. Li, Z. Deng, R. Liu, J. C. Young, H. Zhu, S. Loewen, and R. Tsao, J. Agric. Food Chem. 59, 11803 (2011).CrossRefGoogle Scholar
  12. 12.
    D. V. Ovchinnikov, D. S. Kosyakov, and N. V. Ul’yanovskii, Analit. Kontrol’ 18, 302 (2014).Google Scholar
  13. 13.
    A. S. Samokhin, I. A. Revelsky, D. A. Chepelyansky, O. O. Parenago, O. I. Pokrovsky, F. D. Lepeshkin, K. B. Ustinovich, and A. I. Revelsky, Russ. J. Phys. Chem. B 6, 769 (2012).CrossRefGoogle Scholar
  14. 14.
    Supercritical Fluid Chromatography: Advances and Applications in Pharmaceutical Sciences, Ed. by G. K. Webster (CRC, Boca Raton, FL, 2014).Google Scholar
  15. 15.
    A. Karnangerpour, M. Ashraf-Khorassani, L. T. Taylor, H. M. McNair, and L. Chorida, Chromatografia 55, 417 (2002).CrossRefGoogle Scholar
  16. 16.
    V. T. Tumbas, A. I. Mandic, G. S. Cetkovic, S. M. Dilas, and J. M. Canadanovic-Brunet, Acta Period. Technol. 35, 265 (2004).CrossRefGoogle Scholar
  17. 17.
    L. Zahradnikova, S. Schmidt, Z. Sekelyova, and S. Sekretar, Czech J. Food Sci. 26, 58 (2008).Google Scholar
  18. 18.
    C. West and E. Lesellier, J. Chromatogr. A 1203, 105 (2008).CrossRefGoogle Scholar
  19. 19.
    J. L. Bernal, M. T. Martin, and L. Toribio, J. Chromatogr. A 13, 24 (2013).CrossRefGoogle Scholar
  20. 20.
    A. M. Tarola, F. van de Velde, L. Salvagni, and R. Preti, Food Anal. Methods 6, 227 (2013).CrossRefGoogle Scholar
  21. 21.
    E. F. Gris, F. Mattivi, E. A. Ferreira, U. Vrhovsek, D.W. Filho, R. C. Pedrosa, and M. T. Bordignon-Luiz, J. Food Composit. Anal. 31, 31 (2013).CrossRefGoogle Scholar
  22. 22.
    R. van Leeuw, C. Kevers, J. Pincemail, J. O. Defraigne, and J. Dommes, J. Food Composit. Anal. 36, 40 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. V. Ovchinnikov
    • 1
  • D. S. Kosyakov
    • 1
  • N. V. Ul’yanovskii
    • 1
  • K. G. Bogolitsyn
    • 1
    • 2
  • D. I. Falev
    • 1
  • O. I. Pokrovskiy
    • 3
  1. 1.Lomonosov Northern (Arctic) Federal UniversityArkhangelskRussia
  2. 2.Institute of Ecological Problems in the North, Ural BranchRussian Academy of SciencesArkhangelskRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations