Russian Journal of Physical Chemistry B

, Volume 10, Issue 7, pp 1053–1061

Improvement of functionality of carbonate macadam via supercritical fluid impregnation with bituminous compounds

  • F. M. Gumerov
  • M. I. Farakhov
  • V. F. Khayrutdinov
  • R. F. Gabitov
  • Z. I. Zaripov
  • I. Sh. Khabriyev
  • T. R. Akhmetzyanov
Article
  • 40 Downloads

Abstract

A comprehensive process for the deasphaltizing of heavy oil residue and subsequent treatment (impregnation using a solvent in the supercritical fluid state) of a carbonate macadam by bituminous compounds (deasphaltizate) is developed. The purpose is to improve the functionality of the material and, above all, to reduce its water absorption capacity. The process parameters are specified based on the newly obtained data on the thermal capacity of heavy oil residue and deasphaltizate. The results of the process of experimental implementation and the characteristics of impregnated macadam, including the water absorption capacity which decreased from 3.6 to 0.54%, are presented.

Keywords

propane–butane mixture supercritical fluid state deasphaltizate solubility carbonate macadam impregnation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. E. Skhanova and E. E. Medres, Ross. Predprin., No. 10, 203 (2007). http://www.creativ-economy.ru/articles/ 12247/.Google Scholar
  2. 2.
    A. V. Meshkovvkii, Ross. Predprin., No. 12, 155 (2006). http://www.creativeconomy.ru/articles/8162/.Google Scholar
  3. 3.
    M. V. Solov’eva, in Proceedings of the Conference on Modern Directions of Theoretical and Applied Investigations, 2013.Google Scholar
  4. 4.
    RF Patent No. 2200717 (2001).Google Scholar
  5. 5.
    RF Patent No. 2461522 (2011).Google Scholar
  6. 6.
    M. V. Solov’eva, V. G. Khozin, and A. Yu. Fomin, Izv. KASU, No. 2, 263 (2013).Google Scholar
  7. 7.
    F. M. Gumerov, A. N. Sabirzyanov, and G. I. Gumerova, Sub-and Supercritical Fluids in Polymer Refining Processes (FEN, Kazan, 2000) [in Russian].Google Scholar
  8. 8.
    A. K. Chernyshev, F. M. Gumerov, G. N. Tsvetinskii, R. S. Yarullin, S. V. Ivanov, B. V. Levin, M. I. Shafran, I. F. Zhilin, A. G. Beskov, and K. A. Chernyshev, Carbon Dioxide. Properties, Catching (Production), Application (Galleya-print, Moscow, 2013) [in Russian].Google Scholar
  9. 9.
    W. B. Kay, J. Chem. Eng. Data 15, 44 (1970).CrossRefGoogle Scholar
  10. 10.
    P. Beranek and I. Wichterle, Fluid Phase Equilib. 6, 279 (1981).CrossRefGoogle Scholar
  11. 11.
    N. Juntarachat, S. Bello, R. Privat, and J.-N. Jaubert, J. Chem. Eng. Data, No. 58, 671 (2013).CrossRefGoogle Scholar
  12. 12.
    GOST (State Standard) No. 20448-90.Google Scholar
  13. 13.
    D. G. Amirkhanov, F. M. Gumerov, A. A. Sagdeev, and A. T. Galimova, Solubility of Substances in Supercritical Fluide Media (Otechestvo, Kazan, 2014) [in Russian].Google Scholar
  14. 14.
    M. Mukhopadhyay, Natural Extracts Using Supercritical Carbon Dioxide (CRC Press, Boca Raton, FL, 2000).CrossRefGoogle Scholar
  15. 15.
    GOST (State Standard) No. 8267-93.Google Scholar
  16. 16.
    RF Patent No. 2371468 (2009).Google Scholar
  17. 17.
    F. M. Sultanov and I. R. Khairutdinov, Oil Refining and Petrochemistry, Collection of Scientific Articles of IPNKhPANRB (IPNKhPANRB, Ufa, 2001), No. 33, p. 51 [in Russian].Google Scholar
  18. 18.
    GOST (State Standard) No. 8269.0-97.Google Scholar
  19. 19.
    GOST (State Standard) No. 18995.1-73.Google Scholar
  20. 20.
    GOST (State Standard) No. 22524-77.Google Scholar
  21. 21.
    GOST (State Standard) No. 18995.2-73.Google Scholar
  22. 22.
    GOST (State Standard) No. 3516-74.Google Scholar
  23. 23.
    IT-s-400 Heat Capacity Meter. Operational Documentation (Aklyub. Zavod Etalon, Aktyubinsk, 1987) [in Russian].Google Scholar
  24. 24.
    R. A. Usmanov, R. R. Gabitov, Sh. A. Biktashev, F. N. Shamsetdinov, F. M. Gumerov, F. R. Gabitov, Z. I. Zaripov, R. A. Gazizov, R. S. Yarullin, and I. A. Yakushev, Russ. J. Phys. Chem. B 5, 1216 (2011).CrossRefGoogle Scholar
  25. 25.
    F. N. Scshamsetdinov and I. M. Abdulagatov, in Liquid Fuels: Types, Properties and Production (Nova Science, New York, 2012), Chap. 3, p. 99.Google Scholar
  26. 26.
    B. Guzel and A. Akgerman, J. Supercrit. Fluids 18, 247 (2000).CrossRefGoogle Scholar
  27. 27.
    F. Cansell and J.-P. Petitet, Fluides Supercritiques et materiaux (AIPFS Nancy, France, 1995).Google Scholar
  28. 28.
    S. A. Akhmetov, Technology of Deep Oil and Gas Refining (Gilem, Ufa, 2002) [in Russian].Google Scholar
  29. 29.
    T. P. Zhuze, Compressed Gases as Solvents (Nauka, Moscow, 1974) [in Russian].Google Scholar
  30. 30.
    T. P. Zhuze, The Role of Compressed Gases as Solvents (Nedra, Moscow, 1981) [in Russian].Google Scholar
  31. 31.
    F. M. Gumerov, V. A. Alyaev, S. N. Mikhailova, V. K. Panfilovich, and B. le Neindre, Sverkhkrit. Fluidy Teor. Prakt. 2 (1), 3 (2007).Google Scholar
  32. 32.
    Request on Invention No. 2014118199/03 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • F. M. Gumerov
    • 1
  • M. I. Farakhov
    • 2
  • V. F. Khayrutdinov
    • 1
    • 2
  • R. F. Gabitov
    • 1
  • Z. I. Zaripov
    • 1
  • I. Sh. Khabriyev
    • 1
  • T. R. Akhmetzyanov
    • 1
  1. 1.Federal State Budgetary Educational Institution of Higher Professional Education Kazan National Research Technological UniversityKazanRussia
  2. 2.Limited Liability Company Engineering-Promotional Center “Inzhekhim,”KazanRussia

Personalised recommendations