Skip to main content
Log in

Preparation of copper–molybdenum nanocrystalline pseudoalloys using a combination of mechanical activation and spark plasma sintering techniques

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Nanostructured powders of pseudoalloys of immiscible Cu and Mo metals are prepared by highenergy ball milling (HEBM). Mechanical alloying in an Activator-2S planetary ball mill for 60 min provides a uniform distribution of refractory Mo particles in a moldable Cu matrix on submicron and nanoscopic levels. Nanostructured Cu–Mo powders are consolidated by spark plasma sintering (SPS) in a temperature range of 700–950°C at a pressure of 50 MPa for 10 min. The effect of preparation conditions on the microstructure, crystal structure, and properties (density, hardness, electric resistivity) of the nanostructured Cu–Mo pseudoalloys is studied. It is shown that a combination of HEBM and SPS provides the formation of a high-density (97%) nanostructured consolidated Cu–Mo composite with a hardness of 3.68–3.88 GPa and an electric resistivity of 6.1–6.2 μΩ cm; these parameters made the composite promising for use as an electric-contact material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Myshkin, V. V. Konchits, and M. Braunovic, Electrical Contacts: Fundamentals, Applications and Technology, Electrical and Computer Engineering (CRC, Boca Raton, 2006; Intellekt, Moscow, 2008).

    Google Scholar 

  2. K. Maki, Y. Ito, H. Matsunaga, and H. Mori, Scr. Mater. 68, 777 (2013).

    Article  CAS  Google Scholar 

  3. K. Lu, Scince 328, 319 (2010).

    Article  CAS  Google Scholar 

  4. J. R. Davis, Copper and Copper Alloys (ASM Int., Materials Park, OH, 2001).

    Google Scholar 

  5. Z. K. Fan, S. H. Liang, and P. Xiao, in (China Machine Press, Bejing, 2004), p.1.

  6. J. F. Garay, S. C. Glade, U. Anselmi-Tamburini, et al., Appl. Phys. Lett. 85, 573 (2004).

    Article  CAS  Google Scholar 

  7. Yu. I. Gordeev, G. M. Zeer, A. K. Zelenkova, et al., Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokryt., No. 4, 47 (2010).

    Google Scholar 

  8. A. Kumar, K. Jayasankar, M. Debata, et al., J. Alloys Compd. 647, 1040 (2015).

    Article  CAS  Google Scholar 

  9. V. P. Martinez, C. Aguilar, J. Marin, et al., Mater. Lett. 61, 929 (2007).

    Article  CAS  Google Scholar 

  10. C. Aguilar, D. Guzman, P. A. Rojas, et al., Mater. Chem. Phys. 128, 539 (2011).

    Article  CAS  Google Scholar 

  11. C. Aguilar, S. Ordonez, J. Marin, et al., Mater. Sci. Eng. A 464, 288 (2007).

    Article  Google Scholar 

  12. Shengqi Xi, Kesheng Zuo, Xiaogang Li, et al., Acta Mater. 56, 6050 (2008).

    Article  CAS  Google Scholar 

  13. G. Q. Chen, L. T. Jiang, G. H. Wu, et al., Trans. Nonferr. Metal. Soc. 17, 580 (2007).

    Google Scholar 

  14. J. L. Johnson, Int. J. Powder Metall. 35 (8), 39 (1999).

    CAS  Google Scholar 

  15. T. W. Kirk, S. G. Caldwell, and J. J. Oakes, Adv. Powder Metall. 9, 115 (1992).

    Google Scholar 

  16. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kasprzak (ASM Int., Materials Park, OH, 1990).

  17. Q. V. Nhon, S. Odunuga, P. Bellon, et al., Acta Mater. 57, 3012 (2009).

    Article  Google Scholar 

  18. X. Yang, S. Liang, X. Wang, et al., Int. J. Refract. Met. Hard Mater. 28, 305 (2010).

    Article  CAS  Google Scholar 

  19. Z. F. Li, H. P. Tang, H. Y. Liu, and Y. P. Huang, Rare Met. Lett. 29, 29 (2006).

    Google Scholar 

  20. Xian-liang Zhou, Ying-hu Dong, Xiao-zhen Hua, et al., Mater. Des. 31, 1603 (2010).

    Article  CAS  Google Scholar 

  21. C. Aguilar, F. Castro, V. Martinez, et al., Mater. Sci. Eng., A 548, 189 (2012).

    Article  CAS  Google Scholar 

  22. N. F. Shkodich, A. S. Rogachev, S. G. Vadchenko, et al., J. Alloys Compd. 617, 39 (2014).

    Article  CAS  Google Scholar 

  23. D. A. Romanov, O. V. Olesyuk, E. A. Budovskikh, et al., Vestn. Sib. Ind. Univ. SGIU 1 (7), 7 (2014).

    Google Scholar 

  24. Yu. S. Avraamov and A. D. Shlyapin, Alloys Based on Systems with Limited Solubility in Liquid State (Theory, Technology, Structure and Properties) (Interkontakt Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Shkodich.

Additional information

Original Russian Text © N.F. Shkodich, A.S. Rogachev, A.S. Mukasyan, D.O. Moskovskikh, K.V. Kuskov, A.S. Schukin, N.Yu. Khomenko, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 1, pp. 72–79.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkodich, N.F., Rogachev, A.S., Mukasyan, A.S. et al. Preparation of copper–molybdenum nanocrystalline pseudoalloys using a combination of mechanical activation and spark plasma sintering techniques. Russ. J. Phys. Chem. B 11, 173–179 (2017). https://doi.org/10.1134/S1990793116060269

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116060269

Keywords

Navigation