Skip to main content
Log in

Adsorption of naphthenic acids to the nitrogen-coordinated transition-metal embedded graphene: A DFT study

  • Surface Reactions
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The adsorption properties of two types of naphthenic acids (NAs), benzoic acid and cyclohexane carboxylic acid on four-nitrogen coordinated transition-metal (Mn, Fe, Co, Ni, Cu, and Zn) embedded graphene (TMN4-G) were investigated in detail by means of density functional theory method. The calculation results indicate that NAs prefer the perpendicular adsorption configuration by bonding interactions between their carbonyl oxygen atom and TMN4 active site, and could be chemisorbed on FeN4-G, MnN4-G, and ZnN4-G. The FeN4-G gives the strongest adsorption to the NAs, indicating it is the best adsorbent among them. Electron density maps further confirm that NAs are chemically adsorbed on the FeN4-G surface, accompanied by electron transfer in the adsorption systems. The calculations indicate that benzoic acid has relatively stronger adsorption energy than that of cyclohexane carboxylic acid for the perpendicular adsorption on TMN4-G surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Clemente and P. M. Fedorak, Chemosphere 60, 585 (2005).

    Article  CAS  Google Scholar 

  2. F. M. Holowenko, M. D. MacKinnon, and P. M. Fedorak, Water. Res. 36, 2843 (2002).

    Article  CAS  Google Scholar 

  3. S. J. Rowland, C. E. West, D. Jones, A. G. Scarlett, R. A. Frank, and L. M. Hewitt, Environ. Sci. Technol. 45, 9806 (2011).

    Article  CAS  Google Scholar 

  4. B. Wang, Y. Wan, Y. Gao, G. Zheng, M. Yang, S. Wu, and J. Hu, Environ. Sci. Technol. 49, 5796 (2015).

    Article  CAS  Google Scholar 

  5. E. Slavcheva, B. Shone, and A. Turnbull, Brit. Corros. J. 34, 125 (1999).

    Article  CAS  Google Scholar 

  6. R. A. Frank, R. Kavanagh, B. K. Burnison, G. Arsenault, J. V. Headley, K. M. Peru, G. van der Kraak, and K. R. Solomon, Chemosphere 72, 1309 (2008).

    Article  CAS  Google Scholar 

  7. S. S. Leung, M. D. MacKinnon, anbd R. E. Smith, Aquat. Toxicol. 62, 11 (2003).

    Article  CAS  Google Scholar 

  8. K. E. Tollefsen, K. Petersen, and S. J. Rowland, Environ. Sci. Technol. 46, 5143 (2012).

    Article  CAS  Google Scholar 

  9. V. V. Rogers, M. Wickstrom, K. Liber, and M. D. MacKinnon, Toxicol. Sci. 66, 347 (2002).

    Article  CAS  Google Scholar 

  10. K. Thomas, K. Langford, K. Petersen, A. J. Smith, and K. E. Tollefsen, Environ. Sci. Technol. 43, 8066 (2009).

    Article  CAS  Google Scholar 

  11. D. C. L. Wong, R. van Compernolle, J. G. Nowlin, D. L. O’Neal, and G. M. Johnson, Chemosphere 32, 1669 (1996).

    Article  CAS  Google Scholar 

  12. L. Zou, B. Han, H. Yan, K. L. Kasperski, Y. Xu, and L. G. Hepler, J. Colloid. Interf. Sci. 190, 472 (1997).

    Article  CAS  Google Scholar 

  13. K. A. R. Gomari, R. Denoyel, and A. A. Hamouda, J. Colloid. Interf. Sci. 297, 470 (2006).

    Article  Google Scholar 

  14. R. A. Frank, R. Kavanagh, B. K. Burnison, J. V. Headley, K. M. Peru, G. van der Kraak, and K. R. Solomon, Chemosphere 64, 1346 (2006).

    Article  CAS  Google Scholar 

  15. M. H. Mohamed, L. D. Wilson, J. V. Headley, and K.M. Peru, Process. Safety Environ. Protect. 86, 237 (2008).

    Article  CAS  Google Scholar 

  16. A. K. Geim, Science 324, 1530 (2009).

    Article  CAS  Google Scholar 

  17. J. K. Wassei and R. B. Kaner, Acc. Chem. Res. 46, 2244 (2013).

    Article  CAS  Google Scholar 

  18. O. Leenaerts, B. Partoens, and F. Peeters, Phys. Rev. B 77, 125416 (2008).

    Article  Google Scholar 

  19. M. Oubal, S. Picaud, M. T. Rayez, and J. C. Rayez, Comput. Theor. Chem. 1016, 22 (2013).

    Article  CAS  Google Scholar 

  20. K. Doi, I. Onishi, and S. Kawano, Comput. Theor. Chem. 994, 54 (2012).

    Article  CAS  Google Scholar 

  21. F. Ma, Z. Zhang, H. Jia, X. Liu, Y. Hao, and B. Xu, J. Mol. Struct.: THEOCHEM 955, 134 (2010).

    Article  CAS  Google Scholar 

  22. N. Ding, X. Lu, and C. M. L. Wu, Comput. Mater. Sci. 51, 141 (2012).

    Article  CAS  Google Scholar 

  23. D. Wang, Z. Yang, L. C. Xu, X. Liu, R. Liu, and X. Li, Comput. Theor. Chem. 1062, 84 (2015).

    Article  CAS  Google Scholar 

  24. N. F. Domancich, R. M. Ferullo, and N. J. Castellani, Comput. Theor. Chem. 1059, 27 (2015).

    Article  CAS  Google Scholar 

  25. Y. Mao, J. Yuan, and J. Zhong, J. Phys.: Condens. Matter 20, 115209 (2008).

    Google Scholar 

  26. C. Rajesh, C. Majumder, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys. 130, 124911 (2009).

    Article  Google Scholar 

  27. G. Zhao, L. Jiang, Y. He, J. Li, H. Dong, X. Wang, and W. Hu, Adv. Mater. 23, 3959 (2011).

    Article  CAS  Google Scholar 

  28. O. G. Apul, Q. Wang, Y. Zhou, and T. Karanfil, Water. Res. 47, 1648 (2013).

    Article  CAS  Google Scholar 

  29. Z. Pei, L. Li, L. Sun, S. Zhang, X. Q. Shan, S. Yang, and B. Wen, Carbon 51, 156 (2013).

    Article  CAS  Google Scholar 

  30. F. F. Liu, J. Zhao, S. Wang, P. Du, and B. Xing, Environ. Sci. Technol. 48, 13197 (2014).

    Article  CAS  Google Scholar 

  31. M. Lefèvre, E. Proietti, F. Jaouen, and J. P. Dodelet, Science 324, 71 (2009).

    Article  Google Scholar 

  32. U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefevre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, and J. P. Dodelet, Phys. Chem. Chem. Phys. 14, 11673 (2012).

    Article  CAS  Google Scholar 

  33. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

  34. B. Delley, Comput. Mater. Sci. 17, 122 (2000).

    Article  CAS  Google Scholar 

  35. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  36. S. A. Umoren, I. B. Obot, E. E. Ebenso, P. C. Okafor, O. Ogbobe, and E. E. Oguzie, Anti-Corros. Methods Mater. 53, 277 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Chen, X. Adsorption of naphthenic acids to the nitrogen-coordinated transition-metal embedded graphene: A DFT study. Russ. J. Phys. Chem. B 10, 1027–1031 (2016). https://doi.org/10.1134/S1990793116060233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116060233

Keywords

Navigation