Skip to main content
Log in

Mechanical property of hydrous amorphous cellulose studied by molecular dynamics

  • Chemical Physics of Polymer Materials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The mechanical property of cellulose is universally considered as an important parameter, which reflects the service life of cellulosic insulation paper in the transformer. In this work, the mechanical property of hydrous amorphous cellulose has been studied using molecular dynamics. Analysis of the mechanical parameters of amorphous cellulose cells reveals that amorphous cellulose remains isotropic either in the hydrous or in the anhydrous state, but shows a weakening trend in mechanical property with the increase of water content. Both intramolecular and intermolecular hydrogen bonds in cellulose molecules decrease with increasing water content, directly leading to the decline of cellulose cohesive energy density, solubility parameters, and mechanical parameters. High water content in amorphous cellulose gives bigger interchain distance of cellulose molecules, indicating that the intermolecular interaction of cellulose molecules is weakened greatly by water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Prevost and T. V. Oommen, IEEE Electr. Insul. M 22 1, 28 (2006).

    Article  Google Scholar 

  2. T. V. Oommen and T. A. Prevost, IEEE Electr. Insul. M 22 2, 5 (2006).

    Article  Google Scholar 

  3. A. M. Emsley and G. C. Stevens, IET Sci. Meas. Technol. 141, 324 (1994).

    Article  Google Scholar 

  4. H. Qing and L. Mishnaevsky, Comp. Mater. Sci. 46, 310 (2009).

    Article  Google Scholar 

  5. L. E. Lundgaard, W. Hansen, and S. Ingebrigtsen, IEEE Trans. Dielectr. Electr. Insul. 15, 540 (2008).

    Article  CAS  Google Scholar 

  6. J. F. Matthews, C. E. Skopec, P. E. Mason, et al., Carbohyd. Res. 341, 138 (2006).

    Article  CAS  Google Scholar 

  7. D. M. Leneveu, R. P. Rand, and V. A. Parsegian, Nature 259, 601 (1976).

    Article  CAS  Google Scholar 

  8. S. H. Lee and P. J. Rossky, J. Chem. Phys. 100, 3334 (1994).

    Article  CAS  Google Scholar 

  9. A. P. Heiner and O. Teleman, Langmuir 13, 511 (1997).

    Article  CAS  Google Scholar 

  10. A. P. Heiner, L. Kuutti, and O. Teleman, Carbohyd. Res. 306, 205 (1998).

    Article  CAS  Google Scholar 

  11. K. L. Yin, D. H. Zou, J. Zhong, and D. J. Xu, Comp. Mater. Sci. 38, 538 (2007).

    Article  CAS  Google Scholar 

  12. A. R. Leach, Molecular Modelling: Principles and Applications, 2nd ed. (Prentice-Hall, UK, 2001).

    Google Scholar 

  13. K. Mazeau and L. Heux, J. Phys. Chem. B 107, 2394 (2003).

    Article  CAS  Google Scholar 

  14. W. Chen, G. C. Lickfield, and C. Q. Yang, Polymer 45, 1063 (2004).

    Article  CAS  Google Scholar 

  15. W. Chen, G. C. Lickfield, and C. Q. Yang, Polymer 45, 7357 (2004).

    Article  CAS  Google Scholar 

  16. D. N. Theodorou and U. W. Suter, Macromolecules 18, 1467 (1985).

    Article  CAS  Google Scholar 

  17. J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley-Interscience, New York, 1999).

    Google Scholar 

  18. J. R. Maple, U. Dinur, and A. T. Hagler, Natl. Acad. Sci. USA 85, 5350 (1988).

    Article  CAS  Google Scholar 

  19. J. R. Maple, M. J. Hwang, T. P. Stockfisch, et al., J. Comput. Chem. 15, 162 (1994).

    Article  CAS  Google Scholar 

  20. J. R. Maple, M. J. Hwang, T. P. Stockfisch, and A. T. Hagler, Isr. J. Chem. 34, 195 (1994).

    Article  CAS  Google Scholar 

  21. H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler, J. Am. Chem. Soc. 116, 2978 (1994).

    Article  CAS  Google Scholar 

  22. H. Sun, Macromolecules 28, 701 (1995).

    Article  CAS  Google Scholar 

  23. H. J. C. Berendsen, J. P. M. Postma, and W. F. Funsteren, J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  24. T. A. Andrea, W. C. Swope, and H. C. Andersen, J. Chem. Phys. 79, 4576 (1983).

    Article  CAS  Google Scholar 

  25. P. P. Ewald, Ann. Phys. (N.Y.) 64, 253 (1921).

    Article  Google Scholar 

  26. Materials Studio 4.0 (Accelrys, San Diego, CA, 2005).

  27. J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, 3rd ed. (Reinhold, New York, 1950).

    Google Scholar 

  28. T. Pullawan, A. N. Wilkinson, and S. J. Eichhorn, Compos. Sci. Technol. 70, 2325 (2010).

    Article  CAS  Google Scholar 

  29. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 124, 9074 (2002).

    Article  CAS  Google Scholar 

  30. C. M. Hansen, Prog. Org. Coat. 51, 77 (2004).

    Article  CAS  Google Scholar 

  31. J. R. Fried, M. Sadat-Akhavi, and J. E. Mark, J. Membr. Sci. 149, 115 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Zhu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M.Z., Chen, Y.F., Zhu, W.B. et al. Mechanical property of hydrous amorphous cellulose studied by molecular dynamics. Russ. J. Phys. Chem. B 10, 524–530 (2016). https://doi.org/10.1134/S199079311603012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311603012X

Keywords

Navigation