Skip to main content
Log in

Diffusion of atoms in a dense adsorbed layer with a hexagonal structure

  • The Dynamics of Transport Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The migration of an impurity atom over a honeycomb-type hexagonal lattice on a solid surface initiated by the diffusion of vacancies is theoretically studied. The case of small surface coverages of vacancies and impurity atoms is examined. The time dependence of the mean-square displacement at long time is demonstrated to be not very different from linear, whereas the spatial density distribution is close to a Gaussian profile, a result that makes it possible to introduce a diffusion coefficient. For the latter, an analytical expression is obtained, which differs from the product of the diffusion coefficient of vacancies and their relative concentration V v only by a numerical factor. The dependence of the diffusion coefficient of the impurity atom on the ratio p of the frequency of its jumps to the frequency of jumps of vacancies is analyzed. In the kinetic mode, when the frequency of jumps of the impurity atom is small, the diffusion coefficient of the impurity is a linear function of p, while in the opposite case, a saturation takes place, making this coefficient independent of the frequency of jumps of the impurity atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Flores, S. Junghans, and M. Wutting, Surf. Sci. 371, 14 (1997).

    Article  CAS  Google Scholar 

  2. A. K. Schmid, J. C. Hamilton, N. C. Bartelt, et al., Phys. Rev. Lett. 77, 2977 (1996).

    Article  CAS  Google Scholar 

  3. R. van Gastel, E. Somfai, S. B. van Albada, et al., Phys. Rev. Lett. 86, 1562 (2001).

    Article  Google Scholar 

  4. M. L. Grant, B. S. Swartzentruber, N. C. Bartelt, et al., Phys. Rev. Lett. 86, 4588 (2001).

    Article  CAS  Google Scholar 

  5. M. L. Anderson, N. C. Bartelt, and B. S. Swartzentruber, Surf. Sci. 538, 53 (2003).

    Article  CAS  Google Scholar 

  6. M. L. Anderson, M. J. D’Amato, P. J. Feibelman, et al., Phys. Rev. Lett. 90, 126102 (2003).

    Article  CAS  Google Scholar 

  7. R. van Gastel, R. van Moere, H. J. W. Zandvliet, et al., Surf. Sci. 605, 1956 (2011).

    Article  CAS  Google Scholar 

  8. M. J. A. Brummelhuis and H. J. Hilhorst, J. Stat. Phys. 53, 249 (1988).

    Article  Google Scholar 

  9. J. B. Hannon, C. Klünker, M. Geisen, et al., Phys. Rev. Lett. 79, 2506 (1997).

    Article  CAS  Google Scholar 

  10. T. J. Newman, Phys. Rev. B 59, 13754 (1999).

    Article  CAS  Google Scholar 

  11. E. Somfai, R. van Gastel, S. B. van Albada, et al., Surf. Sci. 521, 26 (2002).

    Article  CAS  Google Scholar 

  12. Z. Toroszkai, Int. J. Mod. Phys. B 11, 3343 (1998).

    Article  Google Scholar 

  13. O. Bénichou and G. Oshanin, Phys. Rev. E 66, 031101 (2002).

    Article  Google Scholar 

  14. M. J. A. Brummelhuis and H. J. Hilhorst, Phys. A 156, 575 (1989).

    Article  Google Scholar 

  15. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 3, 602 (2009).

    Article  Google Scholar 

  16. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 3, 830 (2009).

    Article  Google Scholar 

  17. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 5, 525 (2011).

    Article  CAS  Google Scholar 

  18. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 6, 65 (2012).

    Article  CAS  Google Scholar 

  19. J. R. Hamming, Phys. Rev. A 136, 1758 (1964).

    Article  Google Scholar 

  20. V. N. Kuzovkov and E. A. Kotomin, Rep. Prog. Phys. 51, 1479 (1988).

    Article  CAS  Google Scholar 

  21. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 7, 568 (2013).

    Article  CAS  Google Scholar 

  22. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 8, 420 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Prostnev.

Additional information

Original Russian Text © A.S. Prostnev, B.R. Shub, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 5, pp. 91–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prostnev, A.S., Shub, B.R. Diffusion of atoms in a dense adsorbed layer with a hexagonal structure. Russ. J. Phys. Chem. B 10, 547–551 (2016). https://doi.org/10.1134/S1990793116030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116030076

Keywords

Navigation