Skip to main content
Log in

Parabolic model of the concerted molecular decomposition of chloroalkanes

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The intersecting parabolas model (IPM) is used to analyze the measured kinetic parameters for the concerted molecular decomposition of chloroalkanes RCl to olefin and HCl. According to this model, the configuration of the transition state is formed by three atoms: C…H…Cl. The activation energy E and the rate constant k for 12 previously unstudied reactions of concerted molecular decomposition of RCl are calculated based on the enthalpy of reaction by using the IPM algorithms. The factors that influence the activation energy E for RCl decomposition are established: the enthalpy of reaction, energy of stabilization of radical R, presence of a π bond adjacent to the reaction center, and dipole–dipole interaction for the decomposition of polychloroalkanes. The values of E and k for reverse reactions of addition of HCl to olefins are evaluated. The energy spectrum of partial activation energies for the concerted molecular decomposition of RCl is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Ingold, Structure and Mechanism in Organic Chemistry (Cornell Univ., Ithaca, 1969).

    Google Scholar 

  2. E. T. Denisov, O. M. Sarkisov, and G. I. Likhtenshtein, Chemical Kinetcs: Fundamentals and New Developments (Elsevier, Amsterdam, 2003), p. 268.

    Google Scholar 

  3. M. G. Safarov, F. A. Valeev, V. G. Safarova, and L. Kh. Faizullina, Principles of Organic Chemistry (Khimiya, Moscow, 2012), p. 116 [in Russian].

    Google Scholar 

  4. N. N. Semenov, Selected Works, Vol. 3: On Some Problems of Chemical Kinetics and Reaction Ability (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  5. S. Benson, Thermochemical Kinetics (Wiley, New York, 1968), p. 111.

    Google Scholar 

  6. E. S. Swinbourne, in Comprehensive Chemical Kinetics, Ed. by C. H. Bamford and C. F. H. Tipper (Elsevier, Amsterdam, 1972), Vol. 5, p. 149.

  7. S. W. Benson and H. E. O’Neal, Kinetic Data on Gas Phase Unimolecular Reactions (NSRDS-NBS 21, Gaithersburg, 1970), p. 628.

    Google Scholar 

  8. E. T. Denisov and T. S. Pokidova, Russ. Chem. Rev. 81, 415 (2012).

    Article  CAS  Google Scholar 

  9. L. L. Bladow, C. J. Stopera, W. D. Thweatt, and M. Page, J. Phys. Chem. A 112, 11931 (2008).

    Article  Google Scholar 

  10. L. L. Bladow, C. J. Stopera, W. D. Thweatt, and M. Page, J. Phys. Chem. A 114, 4304 (2010).

    Article  CAS  Google Scholar 

  11. E. T. Denisov, Russ. Chem. Rev. 66, 859 (1997).

    Article  Google Scholar 

  12. E. T. Denisov, Khim. Fiz. 11, 1328 (1992).

    CAS  Google Scholar 

  13. I. V. Aleksandrov, Teor. Eksp. Khim. 12, 878 (1976).

    Google Scholar 

  14. NIST Standart Reference Database 17, NIST Chemical Kinetics Database, Ver. 6.0 (Gaithersburg, 1994).

  15. D. Stull, E. Westrum, and G. Sinke, Chemical Thermodynamics of Organic Compounds (Wiley, New York, 1969; Mir, Moscow, 1971).

    Google Scholar 

  16. E. S. Domalski and E. D. Hearing, J. Phys. Chem. Ref. Data 22, 805 (1993).

    Article  CAS  Google Scholar 

  17. W. Tsang, J. Chem. Phys. 41, 2487 (1964).

    Article  CAS  Google Scholar 

  18. H. Hartman, H. Heydtmann, and G. Rinck, Z. Phys. Chem. 28, 71 (1961).

    Article  Google Scholar 

  19. D. H. R. Barton and P. F. Onyon, J. Am. Chem. Soc. 72, 988 (1950).

    Article  CAS  Google Scholar 

  20. H. Hartman, H. G. Bosche, and H. Heydtmann, Z. Phys. Chem. 42, 329 (1964).

    Article  Google Scholar 

  21. K. E. Howlett, J. Chem. Soc., 945 (1953).

    Google Scholar 

  22. K. E. Howlett, J. Chem. Soc., 4487 (1952).

    Google Scholar 

  23. A. Maccoll and S. C. Wong, J. Chem. Soc. B, 1492 (1968).

    Google Scholar 

  24. P. J. Thomas, J. Chem. Soc., 136 (1961).

    Google Scholar 

  25. R. I. Failes and V. R. Stimson, Aust. J. Chem. 20, 1553 (1967).

    Article  CAS  Google Scholar 

  26. H. Heydtmann and G. Rinck, Z. Phys. Chem. (Neue Folge) 30, 250 (1961).

    Article  CAS  Google Scholar 

  27. E. S. Swinbourne, J. Chem. Soc., 4668 (1960).

    Google Scholar 

  28. E. S. Swinbourne, Aust. J. Chem. 11, 314 (1958).

    Article  CAS  Google Scholar 

  29. D. H. R. Barton, A. J. Head, and R. J. Williams, J. Chem. Soc., 453 (1952).

    Google Scholar 

  30. M. R. Bridge, D. H. Davies, A. Maccoll, and R. A. Ross, J. Chem. Soc. B, 805 (1968).

    Google Scholar 

  31. A. Maccoll and S. C. Wong, J. Chem. Soc. B, 1492 (1968).

    Google Scholar 

  32. C. J. Harding, A. Maccoll, and R. A. Ross, J. Chem. Soc. B, 634 (1969).

    Google Scholar 

  33. E. T. Denisov, T. G. Denisova, and T. S. Pokidova, Handbook of Free Radical Initiators (Wiley, Hoboken, New Yersey, 2003).

    Book  Google Scholar 

  34. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC, Boca Raton, FL, 2007), p. 9.

    Book  Google Scholar 

  35. Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 2004–2005), p. 5.

  36. H. C. Brown and Y. Okamoto, J. Am. Chem. Soc. 79, 1913 (1957).

    Article  CAS  Google Scholar 

  37. L. Hammet, Physical Organic Chemistry: Reaction Rates, Equilibria and Mechanisms (McGraw-Hill, New York, 1970).

    Google Scholar 

  38. E. T. Denisov and T. G. Denisova, Pet. Chem. 55, 85 (2015).

    Article  CAS  Google Scholar 

  39. E. T. Denisov and T. G. Denisova, Application of Thermodynamics to Biological and Materials Science, Ed. by T. Mazutani (InTech, Rijeka, Croatia, 2011), p. 405.

  40. E. T. Denisov, Zh. Fiz. Khim. 68, 1206 (1994).

    CAS  Google Scholar 

  41. E. T. Denisov, Kinet. Catal. 49, 313 (2008).

    Article  CAS  Google Scholar 

  42. E. T. Denisov, Kinetics of Homogeneous Chemical Reactions (Vyssh. Shkola, Moscow, 1988), p. 72 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Denisov.

Additional information

Original Russian Text © T.S. Pokidova, E.T. Denisov, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 5, pp. 23–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokidova, T.S., Denisov, E.T. Parabolic model of the concerted molecular decomposition of chloroalkanes. Russ. J. Phys. Chem. B 10, 394–406 (2016). https://doi.org/10.1134/S1990793116030064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116030064

Keywords

Navigation