Skip to main content
Log in

Spectroscopic determination of the relative particle densities of H2, HD, and D2 Molecules in non-equilibrium hydrogen–deuterium plasma: II. Experimental verification

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The relative intensities of the Balmer series lines of hydrogen and deuterium atoms and the Q-branch lines in the Fulcher-α band system of the H2, HD, and D2 molecules were measured. These lines were emitted by non-equilibrium plasma surrounded by the cylindrical channel of an additional molybdenum electrode located between the cathode and anode of glow (in the deuterium with a minor hydrogen impurity) and arc (in a mixture of D2, H2, and Ne in comparable quantities) discharges at pressures of 6–8 Torr and current densities of 0.4 and 8.5–17 A/cm2, respectively. The measured intensity ratios and gas temperature were used for the estimation of the relative particle densities of the H2, HD, and D2 molecules in the framework of the simple models of the excitation of atoms (models 1a and 1b for the high and low values of dissociation degrees, respectively) and the rovibronic levels of isotopic molecules (model 2). The results obtained by means of models 1a and 2 were in a significant contradiction, whereas the data obtained with the use of models 1b and 2 coincided within error bars. The good agreement between two spectroscopic techniques based on two independent theoretical models and two independent sets of experimental data showed that the techniques proposed are promising for the determination of the isotopic composition of molecules in lowpressure hydrogen-deuterium plasma at least in the case of a low dissociation degree of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Lavrov and A. S. Zhukov, Russ. J. Phys. Chem. B 8, 807 (2014).

    Article  CAS  Google Scholar 

  2. B. P. Lavrov and V. P. Prosikhin, Opt. Spectrosc. 64, 298 (1988).

    Google Scholar 

  3. T. V. Kirbyat’eva, B. P. Lavrov, V. N. Ostrovskii, M. V. Tyutchev, and V. I. Ustimov, Opt. Spectrosc. 52, 21 (1982).

    Google Scholar 

  4. B. P. Lavrov and L. L. Pozdeev, Opt. Spectrosc. 66, 479 (1989).

    Google Scholar 

  5. B. P. Lavrov, A. S. Melnikov, M. Kaening, and J. Roepcke, Phys. Rev. E 59, 3526 (1999).

    Article  CAS  Google Scholar 

  6. A. S. Zhukov and B. P. Lavrov, in Conference Abstracts of the International Student Conference “Science and Progress,” St.-Petersburg (SPb. State Univ., St.-Petersburg, 2013), p.82.

    Google Scholar 

  7. M. D. Gabovich, Physics and Engineering of Plasma Ion Sources (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  8. B. P. Lavrov, A. S. Mikhailov, and I. S. Umrikhin, J. Opt. Technol. 78, 180 (2011).

    Article  CAS  Google Scholar 

  9. B. P. Lavrov and I. S. Umrikhin, arXiv:physics.chem-ph/1112.2277v1 (2011).

  10. B. P. Lavrov and L. P. Shishatskaya, Sov. J. Opt. Technol., 46, 692 (1979).

    Google Scholar 

  11. B. P. Lavrov, M. Kaening, V. L. Ovtchinnikov, and J. Roepcke, in Proceedings of the International Workshop on Frontiers in Low Temperature Plasma Diagnostics II (Bad Honnef, Germany, 1997), p.169.

    Google Scholar 

  12. W. L. Wiese and J. R. Fuhr, J. Phys. Chem. Ref. Data 38, 565 (2009).

    Article  CAS  Google Scholar 

  13. R. S. Freund, J. A. Schiavone, and H. M. Crosswhite, J. Phys. Chem. Ref. Data 14, 235 (1985).

    Article  CAS  Google Scholar 

  14. G. N. Polyakova, A. I. Ranyuk, and V. F. Erko, Sov. Phys. JETP 46, 1117 (1977).

    Google Scholar 

  15. B. P. Lavrov and A. S. Mel’nikov, Opt. Spectrosc. 75, 676 (1993).

    Google Scholar 

  16. B. P. Lavrov and A. S. Mel’nikov, Opt. Spectrosc. 79, 842 (1995).

    Google Scholar 

  17. A. V. Phelps, Plasma Sources Sci. Technol. 20, 043001 (2011).

    Article  Google Scholar 

  18. K. Levenberg, Quart. Appl. Math. 2, 164 (1944).

    Google Scholar 

  19. D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).

    Article  Google Scholar 

  20. N. L. Johnson and F. C. Leone, Statistics and Experimental Design in Engineering and the Physical Sciences (Wiley, New York, 1964).

    Google Scholar 

  21. B. P. Lavrov, Opt. Spectrosc. 48, 375 (1980).

    Google Scholar 

  22. The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke, Ed. by H. M. Crosswhite (Wiley-Interscience, New York, 1972).

  23. G. H. Dieke and R. W. Blue, Phys. Rev. 47, 261 (1935).

    Article  CAS  Google Scholar 

  24. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  25. B. P. Lavrov, B. H. Ostrovskii, and V. K. Ustimov, Sov. Tech. Phys. 25, 1213 (1980).

    Google Scholar 

  26. A. I. Drachev and B. P. Lavrov, High Temp. 26, 129 (1988).

    Google Scholar 

  27. M. Osiac, B. P. Lavrov, and J. Roepcke, J. Quant. Spectrosc. Rad. Transfer 74, 471 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Lavrov.

Additional information

Original Russian Text © A.S. Zhukov, B.P. Lavrov, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 2, pp. 8–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.S., Lavrov, B.P. Spectroscopic determination of the relative particle densities of H2, HD, and D2 Molecules in non-equilibrium hydrogen–deuterium plasma: II. Experimental verification. Russ. J. Phys. Chem. B 10, 5–14 (2016). https://doi.org/10.1134/S1990793116010231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116010231

Keywords

Navigation