Skip to main content
Log in

Infrared spectroscopy of ICAO taggants

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The IR absorption spectra of the ICAO taggants, ethylene glycol dinitrate (EGDN), o-mononitrotoluene (2-NT), p-mononitrotoluene (4-NT) and 2,3-dimethyl-2,3-dinitrobutane (DMDNB) in the vapor phase, are studied at room temperature over a wide frequency range (500–4000 cm–1). The pre-assignment of the observed vibrational bands was performed. Modern quantum-chemical methods are applied to calculate the equilibrium geometries of these molecules and the frequencies of their fundamental vibrations. For the most intense bands of 2-NT and 4-NT, the absorption cross sections are estimated. Based on analysis of current laser technology, it has been concluded that their use in conjunction with the available spectroscopic data makes it possible to reliably perform local and remote detection and identification of ICAO taggants in an open atmosphere in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Federal Law of the Russian Federation dated March 6, 2006, No. 35-FZ “On countering terrorism.” http://nak.fsb.ru/nac/documents/ord_law.html

  2. Presidential Decree of February 15, 2006, No. 116 “On measures to combat terrorism” (with changes on August 2, 2006). http://www.ng.ru/politics/2006-03-03/1_antiterror.html

  3. A. I. Karapuzikov, Sh. Sh. Nabiev, A. I. Nadezhdinskii, and Yu. N. Ponomarev, Opt. Atmos. Okeana 23 (10), 894 (2010).

    Google Scholar 

  4. P. Mostak, Vapor and Trace Detection of Explosives for Anti-Terrorism Purposes, Ed. by M. Krausa and A. Reznev (Kluwer Academic, Dordrecht, 2004), p.23.

  5. Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sredstva Protivodeistv. Terrorizmu, Nos. 1–2, 29 (2013).

    Google Scholar 

  6. M. Tourné, J. Forensic Res. 4 (6), 12 (2013).

    Google Scholar 

  7. J. S. Caygill, F. Davis, and S. P. J. Higson, Talanta 88, 14 (2012).

    Article  CAS  Google Scholar 

  8. S. Yelleti, E. Wilkins, R. A. Sitdikov, et al., in Sensors for Chemical and Biological Applications, Ed. by M. K. Ram and V. R. Bhethanabotla (CRC, New York, 2010), p.277.

  9. J. M. Nilles, T. R. Connell, S. T. Stokes, and H. D. Durst, Propell. Explos. Pyrotech. 35, 446 (2010).

    Article  CAS  Google Scholar 

  10. A. L. Makas, M. L. Troshkov, A. S. Kudryavtsev, and V. M. Lunin, J. Chromatogr. B 800, 63 (2004).

    Article  CAS  Google Scholar 

  11. V. M. Gruznov, V. G. Filonenko, M. N. Baldin, and A. T. Shishmarev, Ros. Khim. Zh. (Zh. Ros. Khim. Obshch. Mendeleeva) 46 (4), 100 (2002).

    CAS  Google Scholar 

  12. D. H. Nguyen, S. Locquiao, P. Huynh, et al., in Electronic Noses and Sensors for the Detection of Explosives, Ed. by J. W. Gardner and J. Yinon (Kluwer Academic, New York, 2004), p.71.

  13. Z. Karpas, Bull. Isr. Chem. Soc., No. 24, 26 (2009).

    Google Scholar 

  14. Aspects of Explosives Detection, Ed. by M. Marshall (Elsevier, London, New York, 2008), p.171.

  15. Z. Bielecki, J. Janucki, A. Kawalec, et al., Metrol. Meas. Syst. 19, 3 (2012).

    Article  Google Scholar 

  16. L. A. Skvortsov, Quantum Electron. 42, 1 (2012).

    Article  CAS  Google Scholar 

  17. M. E. Germain and M. J. Knapp, Chem. Soc. Rev. 38, 2543 (2009).

    Article  CAS  Google Scholar 

  18. O. M. Primera-Pedrozo, Y. M. Soto-Feliciano, L. C. Pacheco-Londoño, and P. Hernández-Rivera, Sens. Imaging 10, 1 (2009).

    Article  Google Scholar 

  19. M. Snels, T. Venezia, and L. Belfiore, Chem. Phys. Lett. 489, 134 (2010).

    Article  CAS  Google Scholar 

  20. H. Östmark, M. Nordberg, and T. E. Carlsson, Appl. Opt. 50, 5592 (2011).

    Article  Google Scholar 

  21. D. D. Tuschel, A. V. Mikhonin, B. E. Lemoff, and S. A. Asher, Appl. Spectrosc. 64, 425 (2010).

    Article  CAS  Google Scholar 

  22. B. D. Piorek, S. J. Lee, M. Moskovits, and C. D. Meinhart, Anal. Chem. 84, 9700 (2012).

    Article  CAS  Google Scholar 

  23. C. Bauer, U. Willer, and W. Schade, Opt. Eng. 49, 111126 (2010).

    Article  Google Scholar 

  24. X. Chen, D. Guo, F.-S. Choa, et al., Appl. Opt. 52, 2626 (2013).

    Article  Google Scholar 

  25. Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, et al., Gorenie Plazmokhim. 11, 19 (2013).

    CAS  Google Scholar 

  26. H. Ostmark, S. Wallin, and H. G. Ang, Propell. Explos. Pyrotech. 37, 12 (2012).

    Article  Google Scholar 

  27. B. T. Kenna, F. J. Conrad, and D. W. Hannum, in Proceedings of the 1st International Symposium on Explosives and Detection Technology, Ed. by S. M. Khan (FAA, Atlantic City, NJ, 1991), p.510.

  28. Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, V. L. Zbarskii, N. V. Yudin, V. L. Vaks, E. G. Domracheva, and M. B. Chernyaeva, Russ. J. Phys. Chem. B 7, 203 (2013).

    Article  CAS  Google Scholar 

  29. E. N. Golubeva and Sh. Sh. Nabiev, in Proceedings of the 1st International Internet Conference at the Junction of Sciences: Physicochemical Ser. (Kazan, 2013), p.43.

    Google Scholar 

  30. Convention on the Marking of Plastic Explosives for the Purpose of Detection, ICAO Doc. 9571 (ICAO, Montreal, 1991). http://www.icao.org/

  31. Committee on Marking, Rendering Inert, and Licensing of Explosive Materials. Containing the Threat from Illegal Bombings (Natl. Academy Press, Washington, DC, 1998), p.72.

  32. J. I. Steinfeld and J. Wormhoudt, Ann. Rev. Phys. Chem. 49, 203 (1998).

    Article  CAS  Google Scholar 

  33. D. P. Cutler and A. K. Brown, J. Hazard. Mater. 46, 169 (1996).

    Article  CAS  Google Scholar 

  34. D. E. Jones, P. D. Lightfoot, R. C. Fouchard, and Q. S. M. Kwok, Thermochim. Acta 388, 159 (2002).

    Article  CAS  Google Scholar 

  35. S. V. Nekhoroshev, Yu. P. Turov, V. P. Nekhoroshev, and A. V. Nekhorosheva, J. Anal. Chem. 65, 988 (2010).

    Article  CAS  Google Scholar 

  36. V. P. Il’in, S. I. Valeshnyi, V. A. Kashaev, and N. P. Tikhomirova, Industrial Technologies for Production of Taggants (Kristall, Dzerzhinsk, 2010) [in Russian].

    Google Scholar 

  37. D. S. Moore, Rev. Sci. Instrum. 75, 2499 (2004).

    Article  CAS  Google Scholar 

  38. J. A. Widegren and T. J. Bruno, J. Chem. Eng. Data 55, 59 (2010).

    Article  Google Scholar 

  39. R. G. Ewing, M. J. Waltman, D. A. Atkinson, et al., TrAC Trends Anal. Chem. 42, 35 (2013).

    Article  CAS  Google Scholar 

  40. S. P. Verevkin and A. Heintz, J. Chem. Thermodyn. 32, 1169 (2000).

    Article  CAS  Google Scholar 

  41. P. A. Pella, J. Chem. Thermodyn. 9, 301 (1977).

    Article  CAS  Google Scholar 

  42. V. L. Zbarskii and V. F. Zhilin, Toluene and Its Nitro Derivatives (URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  43. B. C. Dionne, D. P. Rounbehler, E. K. Achter, et al., J. Energet. Mater. 4, 447 (1986).

    Article  CAS  Google Scholar 

  44. S. Ramalingam, S. Periandy, M. Govindarajan, and S. Mohan, Spectrochim. Acta, Part A 75, 1308 (2010).

    Article  CAS  Google Scholar 

  45. F. M. Abu-Awwad, Doctoral Thesis (Emporia State Univ., Emporia, Kansas, 1996).

    Google Scholar 

  46. M. Qayyum, R. B. Venkatram, and G. R. Rao, Spectrochim. Acta, Part A 60, 279 (2004).

    Article  Google Scholar 

  47. G. Yildirim, S. D. Senol, M. Dogruer, et al., Spectrochim. Acta, Part A 85, 271 (2012).

    Article  CAS  Google Scholar 

  48. J. Tomkinson, Spectrochim. Acta, Part A 77, 539 (2010).

    Article  Google Scholar 

  49. G. A. Beresneva, L. V. Khristenko, S. V. Krasnoshchekov, and Yu. A. Pentin, Zh. Prikl. Spectrosk. 48, 946 (1988).

    CAS  Google Scholar 

  50. T. Lemi and S. Erkoc, J. Hazard. Mater. A 136, 164 (2006).

    Article  Google Scholar 

  51. X. D. Cong and H. M. Xiao, J. Mol. Struct. 572, 213 (2001).

    Article  Google Scholar 

  52. L. Czuchajowski and S. A. Kucharski, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 20, 797 (1972).

    CAS  Google Scholar 

  53. M. Li, X. Guo, F. Li, and H. Song, Chin. J. Chem. 27, 1871 (2009).

    Article  CAS  Google Scholar 

  54. G. Varsanyi, Assignments for Vibrational Spectra of 700 Benzene Derivatives (Akademiai Kiado, Budapest, 1973), p.143.

    Google Scholar 

  55. G. A. Beresneva, L. V. Khristenko, and Yu. A. Pentin, Vestn. Mosk. Univ., Ser. Khim. 26, 535 (1985).

    CAS  Google Scholar 

  56. A. O. Diallo, Spectrochim. Acta, Part A 30, 1505 (1974).

    Article  Google Scholar 

  57. B. Tan, L. H. Chia, H. H. Huang, et al., J. Chem. Soc., Perkin Trans. 2, 1407 (1984).

    Article  Google Scholar 

  58. A. Banas, K. Banas, M. Bahou, et al., Vibrat. Spectrosc. 51, 168 (2009).

    Article  CAS  Google Scholar 

  59. R. Infante-Castillo and S. P. Hernandez-Rivera, Proc. SPIE—Int. Soc. Opt. Eng. 5461, 62012 (2006).

    Google Scholar 

  60. J. Clarkson, W. Smith, D. Batchelder, et al., J. Mol. Struct. 648, 203 (2003).

    Article  CAS  Google Scholar 

  61. P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC Res., Ottawa, Ontario, Canada, 2006), p.414.

    Google Scholar 

  62. K. Ya. Burshtein and P. P. Shorygin, Quantum-Chemical Calculations in Organic Chemistry and Molecular Spectroscopy (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  63. E. B. Wilson, Phys. Rev. 45, 706 (1934).

    Article  CAS  Google Scholar 

  64. P. S. Kalsi, Spectroscopy of Organic Compounds (New Age, New Delhi, 2004), p.65.

    Google Scholar 

  65. Y. P. Garignan and C. L. Hickman, Tech. Rep. No. 4350 (Picatinny Arsenal, Dover, New York, 1972).

    Google Scholar 

  66. T. Urbanski, J. Sci. Ind. Res. 33, 124 (1974).

    CAS  Google Scholar 

  67. J. A. Janni, PhD Thesis (Massachusetts Inst. of Technol., Massachusetts, 1998).

    Google Scholar 

  68. Sh. Sh. Nabiev and L. A. Palkina, in Proceedings of the 3rd International Conference on Atmosphere, Ionosphere, Safety AIS-2012, Kalinigrad, Russia, 2012 (Kant Baltic Fed. Univ., Kaliningrad, 2012), p.122.

    Google Scholar 

  69. R. F. Curl, F. Capasso, C. Gmachl, et al., Chem. Phys. Lett. 487, 1 (2010).

    Article  CAS  Google Scholar 

  70. Springer Handbook of Lasers and Optics, Ed. by F. Träger (Springer, Berlin, Heidelberg, 2012), p.792.

  71. M. Troccoli, A. Lyakh, J. Fan, et al., Opt. Mater. Express 3, 1546 (2013).

    Article  Google Scholar 

  72. Y. Bai, S. R. Darvish, S. Slivken, et al., Appl. Phys. Lett. 92, 101105 (2008).

    Article  Google Scholar 

  73. P. Corrigan, M. Lwin, R. Huntley, et al., Proc. SPIE—Int. Soc. Opt. Eng. 7312, 73120 (2009).

    Google Scholar 

  74. A. Grisard, E. Lallier, and B. Gerard, Opt. Mater. Express 2, 1020 (2012).

    Article  CAS  Google Scholar 

  75. C. M. Chernin, Multipass Systems in Optics and Spectroscopy (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  76. G. Yu. Grigoriev, S. L. Malyugin, Sh. Sh. Nabiev, et al., Appl. Phys. B: Lasers Opt. 101, 683 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Sh. Nabiev.

Additional information

Original Russian Text © Sh.Sh. Nabiev, D.B. Stavrovskii, L.A. Palkina, E.N. Golubeva, V.L. Zbarskii, N.V. Yudin, V.M. Semenov, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 1, pp. 93–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabiev, S.S., Stavrovskii, D.B., Palkina, L.A. et al. Infrared spectroscopy of ICAO taggants. Russ. J. Phys. Chem. B 10, 159–171 (2016). https://doi.org/10.1134/S1990793116010103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116010103

Keywords

Navigation