Russian Journal of Physical Chemistry B

, Volume 9, Issue 7, pp 1059–1064 | Cite as

Components of supercritical extracts of garlic and synthetic nonsymmetrical allyl disulfides as potential antimicrobial preparations

  • D. Yu. Zalepugin
  • N. A. Tilkunova
  • I. V. Chernyshova
  • M. I. Vlasov
  • A. L. Mulyukin
Article

Abstract

Extracts of garlic (Allium sativum L.) were obtained using supercritical carbon dioxide extraction and were separated into individual compounds using preparative high performance liquid and gas chromatography. A series of nonsymmetrical allyl disulfides with different substituents were synthesized. The compounds isolated from the supercritical garlic extract and the synthetic nonsymmetrical allyl disulfides (SNA) were tested as potential antimicrobial agents using a number of test objects: Candida utilis, Bacillus cereus, Pseudomonas aurantiaca, and Escherichia coli. It was shown that the SNA exhibit high antimicrobial activity, which was much higher that the activities of individual components of garlic and in some cases were comparable in efficiency with antibiotics of the floxacin series widely used in clinical practice. The data obtained suggest the potential for using SNA as antimicrobial agents.

Keywords

supercritical extraction carbon dioxide garlic extract allyl disulfides biocides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Harjai, R. Kumar, and S. Singh, FEMS Immunol. Med. Microbiol. 58, 161 (2010).CrossRefGoogle Scholar
  2. 2.
    E. A. Palombo, Evidence-Based Complem. Altern. Med. 2011, 680354 (2011).CrossRefGoogle Scholar
  3. 3.
    S. D. Chavah, N. L. Shetty, and M. Kanuri, Oral. Health Rev. Dent. 8, 369 (2010).Google Scholar
  4. 4.
    E. J. Nya and B. Austin, J. Fish Dis. 32, 9635 (2009).Google Scholar
  5. 5.
    A. Hannan, UllahM. Ikram, M. Usman, S. Hussian, M. Absar, and J. K. Pak, J. Pharm. Sci. 24, 81 (2011).Google Scholar
  6. 6.
    R. Ruiz, M. P. Garcia, A. Lara, and L. A. Rubio, Vet. Microbiol. 144, 110 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Liu, Y. Sun, W. Li, H. Yu, X. Li, et al., FEMS Microbiol. Lett. 303, 183 (2010).CrossRefGoogle Scholar
  8. 8.
    M. N. Palaksha, M. Ahmed, and S. Das, J. Nat. Sci., Biol. Med. 1, 12 (2010).CrossRefGoogle Scholar
  9. 9.
    G. Goncagul and E. Ayaz, Recent Pat. Antiinfect. Drug Discov. 5, 91 (2010).CrossRefGoogle Scholar
  10. 10.
    J. F. Ayala-Zavala and G. A. Gonzalez-Agular, J. Food Sci. 75, M398 (2010).CrossRefGoogle Scholar
  11. 11.
    J. F. Ayala-Zavala, G. A. Gonzalez-Agular, and L. del Toro Sanchez, J. Food Sci. 74, R84 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Stoll and E. Seebeck, Adv. Enzymol. 11, 377 (1951).Google Scholar
  13. 13.
    E. Block, S. Ahmad, J. L. Catalfamo, M. K. Jain, and R. Apiz-Castro, J. Am. Chem. Soc. 108, 7045 (1986).CrossRefGoogle Scholar
  14. 14.
    H. Borjihan, A. Ogita, K. Fujita, T. Kirasawa, and T. Tanaka, J. Antibiot. (Tokyo) 62, 691 (2009).CrossRefGoogle Scholar
  15. 15.
    H. Borjihan, A. Ogita, K. Fujita, M. Doe, and T. Tanaka, Planta Med. 76, 1864 (2010).CrossRefGoogle Scholar
  16. 16.
    F. C. Velkers, K. Dieho, F. W. Pecher, J. C. Vernooij, J. H. van Eck, and W. J. Landman, Poult. Sci. 90, 364 (2011).CrossRefGoogle Scholar
  17. 17.
    A. Coppi, M. Cabinian, D. Mirelman, and P. Sinnis, Vet. Antimicrob. Agents Chemother., 1737 (2006).Google Scholar
  18. 18.
    M. Alam, V. Dwivwdi, A. A. Khan, and O. Mohammad, Nanomedicine (London) 4, 713 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Khodavandi, N. S. Hormal, et al., Phytomedicine 19, 56 (2011).CrossRefGoogle Scholar
  20. 20.
    C.-H. Chen, T.-W. Chou, L.-H. Cheng, and C.-W. Ho, J. Taiwan Inst. Chem. Eng. 42, 228 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Arzanlou and S. Bohlooli, J. Med. Microbiol. 59, 1044 (2010).CrossRefGoogle Scholar
  22. 22.
    C. Dini, A. Fabbri, and A. Geraci, Ann. Ist. Super. Sanita 47, 465 (2011).Google Scholar
  23. 23.
    R. Gupta, B. Thakur, P. Singh, et al., Ind. J. Med. Res. 131, 809 (2010).Google Scholar
  24. 24.
    I. Gull, M. Saeed, H. Shaukat, S. M. Aslam, Z. Samra, and A. Athar, Ann. Clin. Microbiol. Antimicrob. 11, 8 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Rahman, A. K. Parves, R. Islam, and M. H. Khan, Ann. Clin. Microbiol. Antimicrob. 10, 10 (2011).CrossRefGoogle Scholar
  26. 26.
    US Patent No. 20120189710.Google Scholar
  27. 27.
    E. M. Calvey, J. E. Matusik, K. D. White, R. DeOrazio, D. Sha, and E. J. Block, Agric. Food Chem. 45, 4406 (1997).CrossRefGoogle Scholar
  28. 28.
    D. P. Ilic, V. D. Nikolic, L. B. Nikolic, M. Z. Stankovic, and L. P. Stanojevic, Hem. Ind. 64, 85 (2010).CrossRefGoogle Scholar
  29. 29.
    R. R. Culter and P. Wilson, Brit. J. Biomed. Sci. 61, 71 (2004).Google Scholar
  30. 30.
    T. Miron, A. Rabinkov, D. Mirelman, M. Wilchek, and L. Weiner, Biochim. Biophys. Acta 1463, 20 (2000).CrossRefGoogle Scholar
  31. 31.
    US Patent No. 20100204337.Google Scholar
  32. 32.
    US Patent No. 2004022280.Google Scholar
  33. 33.
    US Patent No. 4049665.Google Scholar
  34. 34.
    S. Casella, M. Leonardi, B. Melai, F. Fratini, and L. Pistelli, Phytother. Res. 27, 380 (2012).CrossRefGoogle Scholar
  35. 35.
    K. H. Kyung, Curr. Opin. Biotechnol. 23, 142 (2012).CrossRefGoogle Scholar
  36. 36.
    D. Yu. Zalepugin, N. A. Tilkunova, Yu. S. Yashin, I. V. Chernyshova, V. S. Mishin, and A. L. Mulyukin, Russ. J. Phys. Chem. B 4, 1103 (2010).CrossRefGoogle Scholar
  37. 37.
    S. K. Spangler, M. A. Visalli, M. R. Jacobs, and P. C. Appelbaum, Antimicrob. Agents Chemother. 40, 772 (1996).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. Yu. Zalepugin
    • 1
  • N. A. Tilkunova
    • 1
  • I. V. Chernyshova
    • 1
  • M. I. Vlasov
    • 1
  • A. L. Mulyukin
    • 2
  1. 1.Federal State Unitary Enterprise “State Plant of Medicinal Drugs”MoscowRussia
  2. 2.Vinogradskii Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations