Russian Journal of Physical Chemistry B

, Volume 9, Issue 7, pp 1005–1010 | Cite as

Xenogenic bone matrix treated with supercritical carbon dioxide as a potential osteoplastic material

  • D. Yu. Zalepugin
  • V. V. Zaitzev
  • N. A. Tilkunova
  • I. V. Chernyshova
  • I. I. Selezneva
  • Yu. A. Nikonova
  • M. I. Vlasov
Article
  • 54 Downloads

Abstract

A multistage environmentally safe method for processing xenogenic bone matrix using suband supercritical media has been developed. This method provides fast matrix delipidization in a medium of supercritical carbon dioxide and deproteinization by treatment with a 3% hydrogen peroxide solution followed by washing with subcritical water for removal of polar substances. The final treatment with supercritical carbon dioxide serves to remove residual nonpolar components. A method to control the porosity of xenogenic bone matrix at different stages of its purification has been suggested. Preliminary data indicate that a cellular test system based on an allogenic osteoid cell line Th-1 could be used for evaluation of primary adhesion and proliferation of cells on the surface of purified bone matrix.

Keywords

supercritical extraction porosity carbon dioxide xenogenic matrix osteoplastic materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Shtaigmann, Dental. Implantol. Khirurg. 3 (12), 47 (2013).Google Scholar
  2. 2.
    RF Patent No. 2279281 (2006).Google Scholar
  3. 3.
    RF Patent No. 2161976 (2001).Google Scholar
  4. 4.
    RF Patent No. 2456003 (2013).Google Scholar
  5. 5.
    RF Patent No. 2495567 (2013).Google Scholar
  6. 6.
    US Patent No. 6613278 B1 (2003).Google Scholar
  7. 7.
    A. R. C. Duarte, S. G. Caridade, J. F. Mano, and R. L. Reis, Mater. Sci. Eng. C 29, 2110 (2009).CrossRefGoogle Scholar
  8. 8.
    A. R. C. Duarte et al., J. Supercrit. Fluids 79, 177 (2013).CrossRefGoogle Scholar
  9. 9.
    US Patent No. 5725579 (1998).Google Scholar
  10. 10.
    US Patent No. 6217614 (2001).Google Scholar
  11. 11.
    US Patent No. 8007718 (2011).Google Scholar
  12. 12.
    US Patent No. 7008591 (2006).Google Scholar
  13. 13.
    C.-F. Chen, C.-S. Chang, Y.-P. Chen, T.-S. Lin, C.-Y. Su, and S.-Y. Lee, Ind. Eng. Chem. Res. 45, 3400 (2006).CrossRefGoogle Scholar
  14. 14.
    J. Fages, A. Marty, C. Delga, J.-S. Condoret, D. Combes, and P. Frayssinet, Biomaterials 15, 650 (1994).CrossRefGoogle Scholar
  15. 15.
    L. Chang, Y.-J. Chen, Y.-P. Chen, C.-T. Chen, W.-H. Yu, and J. Formosan, Microscel. Disord. 2 (2), 55 (2011).Google Scholar
  16. 16.
    B. Long, L. Dan, L. Min, J. Jing, I. Rong, H. Zhaosong, and W. Jun, Mater. Lett. 64, 2056 (2010).CrossRefGoogle Scholar
  17. 17.
    D. Mitton, J. Rappeneau, and R. Bardonnet, Eur. J. Orthopaed. Surg. Traumatol. 15, 264 (2005).CrossRefGoogle Scholar
  18. 18.
    N. Russel, A. Rives, N. Bertollo, M. H. Pelletier, and W. R. Walsh, J. Biomech. 46, 1670 (2013).CrossRefGoogle Scholar
  19. 19.
    US Patent No. 5333626 (1994).Google Scholar
  20. 20.
    D. Yu. Zalepugin, N. A. Til’kunova, V. L. Korolev, E. N. Glukhan, and V. S. Mishin, Sverkhkrit. Fluidy: Teor. Prakt. 1 (2), 36 (2006).Google Scholar
  21. 21.
    RF Patent No. 2263894 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. Yu. Zalepugin
    • 1
  • V. V. Zaitzev
    • 2
  • N. A. Tilkunova
    • 1
  • I. V. Chernyshova
    • 1
  • I. I. Selezneva
    • 3
  • Yu. A. Nikonova
    • 3
  • M. I. Vlasov
    • 1
  1. 1.Federal State Unitary Enterprise “State Plant of Medicinal Drugs” (GosZMP)MoscowRussia
  2. 2.Federal State Institution of Science “Priorov Central Institute of Traumatology and Orthopaedics”MoscowRussia
  3. 3.Federal State Budgetary Institution of Science “Institute of Theoretical and Experimental Biophysics”Russian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations