Russian Journal of Physical Chemistry B

, Volume 9, Issue 7, pp 1048–1053 | Cite as

Formation of microcapsules containing titanium dioxide nanoparticles by pulse expansion of a supercritical solution into a background gas

  • K. A. Tatarenko
  • A. V. Lazarev
  • D. N. Trubnikov
Article

Abstract

The formation of microcapsules with a core of TiO2 nanoparticles in a shell of polyethylene glycol by pulse expansion (pulse duration of 400 µs) of a supersonic jet of TiO2-suspension in a supercritical solution of polyethylene glycol (PEG 8000) in CO2 into a background gas (He) is studied. It is shown that the size of capsules and the content of TiO2 in them depend on the pressure of the background gas in the inlet chamber in the range from 0.125 to 3 atm. The upper (1.5 atm) and the lower (0.25 atm) limits of the pressure range, in which microcapsules with a relatively high content of titanium dioxide are formed, are determined.

Keywords

pulsed supersonic jet formation of microcapsules TiO2 nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Naga Jyothi, M. Prasanna, S. Prabha, P. S. Ramaiah, G. Srawan, and S. N. Sakarkar, Internet J. Nanotechnol. 3, 1 (2009).Google Scholar
  2. 2.
    M. J. Cocero, A. Martin, F. Mattea, and S. J. Varona, J. Supercrit. Fluids 47, 546 (2009).CrossRefGoogle Scholar
  3. 3.
    E. Reverchon, R. Adami, S. Cardea, and G. Della Porta, J. Supercrit. Fluids 47, 484 (2009).CrossRefGoogle Scholar
  4. 4.
    O. Yesil-Celiktas and D. Deniz Senyay, Ind. Eng. Chem. Res. 49, 7017 (2010).CrossRefGoogle Scholar
  5. 5.
    V. P. Krainov and M. B. Smirnov, Phys. Rep. 370, 237 (2002).CrossRefGoogle Scholar
  6. 6.
    I. M. Livshits, A. Yu. Grosberg, and A. R. Khokhlov, Sov. Phys. Usp. 22, 123 (1979).CrossRefGoogle Scholar
  7. 7.
    M. Weber and M. C. Thies, Understanding the RESS Process (Sun, New York, 2002).CrossRefGoogle Scholar
  8. 8.
    P. G. Debenedetti, J. W. Tom, X. Kwauk, and S.-D. Yeo, Fluid Phase Equilib. 82, 311 (1993).CrossRefGoogle Scholar
  9. 9.
    J. W. Tom and P. G. J. Debenedetti, Aerosol. Sci. 22, 555 (1991).CrossRefGoogle Scholar
  10. 10.
    M. Weber and M. C. J. Thies, Supercrit. Fluids 40, 402 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Weber, L. M. Russel, and P. G. J. Debenedetti, Supercrit. Fluids 23, 65 (2002).CrossRefGoogle Scholar
  12. 12.
    Ali Ben Moussa and Hatem Ksibi, Int. J. Emerg. Multidisciplin. Fluid Sci. 1, 45 (2010).Google Scholar
  13. 13.
    K. Matsuyama, K. Mishima, K.-I. Hayashi, H. Ishikawa, H. Matsuyama, and T. J. Harada, Appl. Polym. Sci. 89, 742 (2003).CrossRefGoogle Scholar
  14. 14.
    K. Mishima, K. Matsuyama, D. Tanabe, S. Yamauchi, T. J. Young, and K. P. Johnston, AIChE. J. 46, 857 (2000).CrossRefGoogle Scholar
  15. 15.
    D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976).CrossRefGoogle Scholar
  16. 16.
    E. Heidaryan and A. J. Jarrahian, Supercrit. Fluids 81, 92 (2013).CrossRefGoogle Scholar
  17. 17.
    I. M. Lifshitz, A. Yu. Grosberg, and A. R. Khokhlov, Rev. Mod. Phys. 50, 684 (1978).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. A. Tatarenko
    • 1
  • A. V. Lazarev
    • 1
  • D. N. Trubnikov
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations