Russian Journal of Physical Chemistry B

, Volume 9, Issue 7, pp 1054–1058 | Cite as

Solubility of caffeine in the supercritical CO2–methanol binary solvent



The caffeine–methanol association constant at 313 K has been determined by 1H NMR spectroscopy. The caffeine solubility in the supercritical carbon dioxide (SC-CO2)–methanol mixed solvent has been calculated using the association constant experimentally measured by NMR in the framework of the associated solution + lattice (ASL) model, which is based on the theory of molecular association and a simple lattice model. Individual contributions to the solubility have been determined, and the relative role of various factors determining the solubility of caffeine in the mixed solvent has been analyzed. The caffeine solubility as a function of the methanol content of the SC-CO2–methanol system is predicted to pass through a maximum.


molecular association solubility supercritical fluid mixed solvent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Johannsen and G. Brunner, J. Chem. Eng. Data 40, 431 (1995).CrossRefGoogle Scholar
  2. 2.
    U. Kopcak and R. S. Mohamed, J. Supercrit. Fluids 34, 209 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Yu. Nikiforov, E. D. Totchasov, and G. A. Al’per, Russ. J. Phys. Chem. A 81, 1623 (2007).CrossRefGoogle Scholar
  4. 4.
    M. Yu. Nikiforov, E. D. Totchasov, and G. A. Al’per, J. Struct. Chem. 48, 474 (2007).CrossRefGoogle Scholar
  5. 5.
    M. Yu. Nikiforov, V. A. Golubev, G. M. Mamardashvili, and G. A. Al’per, J. Struct. Chem. 52, 304 (2011).CrossRefGoogle Scholar
  6. 6.
    T. Tassaing, J.-C. Soetens, I. Vyalov, M. Kiselev, and A. Idrissi, J. Chem. Phys. 133, 214505 (2010).CrossRefGoogle Scholar
  7. 7.
    D. S. Bulgarevich, T. Sako, T. Sugeta, K. Otake, Y. Takebayashi, C. Kamizawa, Y. Horikawa, and M. Kato, Ind. Eng. Chem. Res. 41, 2074 (2002).CrossRefGoogle Scholar
  8. 8.
    A. Gordon and R. Ford, The Chemist’s Companion, A Handbook of Practical Data. Techniques and References (Wiley, New York, 1972).Google Scholar
  9. 9.
    V. Brandani and F. Evangelista, Fluid Phase Equilib. 17, 281 (1984).CrossRefGoogle Scholar
  10. 10.
    J. H. Vera, S. G. Sayegh, and G. A. Ratcliff, Fluid Phase Equilib. 1, 113 (1977).CrossRefGoogle Scholar
  11. 11.
    A. Bondi, J. Phys. Chem. 68, 441 (1964).CrossRefGoogle Scholar
  12. 12.
    A. Shalmashi and F. Golmohammad, Lat. Am. Appl. Res. 40, 283 (2010).Google Scholar
  13. 13.
    M. Maiwald, H. Li, T. Schnabel, K. Braun, and H. Hasse, Supercrit. Fluids 43, 267 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Golubev
    • 1
  • M. Yu. Nikiforov
    • 1
  • G. A. Alper
    • 1
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations