Russian Journal of Physical Chemistry B

, Volume 9, Issue 7, pp 1065–1073 | Cite as

Supercritical fluid technologies in the chemistry of wood and its components

  • K. G. Bogolitsyn
  • A. A. Krasikova
  • M. A. Gusakova
Article

Abstract

The advantages of application of supercritical fluid technologies at the stages of complex wood and plant processing are analyzed based on the modern concept of lignin-carbohydrate matrix formation.

Keywords

thermodynamic compatibility supercritical fluid lignin-carbohydrate matrix wood substance lignin cellulose hemicelluloses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. G. Bogolitsyn, V. V. Lunin, D. S. Kosyakov, et al., Physical Chemistry of Lignin, Ed. by K. G. Bogolitsyn and V. V. Lunin (Akademkniga, Moscow, 2010) [in Russian].Google Scholar
  2. 2.
    K. Bogolitsyn, Cellulose and Cellulose Derivatives: Physico-Chemical Aspect and Industrial Applications (Woodhead, 1995), p. 499.CrossRefGoogle Scholar
  3. 3.
    K. G. Bogolitsyn, in Proceedings of the International Conference on Physicochemistry of Lignin (Arkhangel’sk, 2007), p. 16.Google Scholar
  4. 4.
    K. G. Bogolitsyn, D. G. Chukhchin, I. N. Zubov, and M. A. Gusakova, Khim. Rastit. Syr’ya, No. 3, 37 (2012).Google Scholar
  5. 5.
    A. P. Karmanov, Zh. Fiz. Khim. 77, 2277 (2003).Google Scholar
  6. 6.
    K. G. Bogolitsyn, Zh. Ros. Khim. Obshch. Mendeleeva 48 (6), 105 (2004).Google Scholar
  7. 7.
    J. Shi, L. S. Kassama, and Y. Kakuda, Functional Food and Nutraceuticals: Processing Technologies (CRC Press, Boca Raton, 2007), Ch. 1.Google Scholar
  8. 8.
    M. Angela and A. Meireles, Electron. J. Environ., Agricult. Food Chem. 7, 3254 (2008).Google Scholar
  9. 9.
    G. He, H. Xiong, Q. Chen, H. Ruan, Z. Wang, and L. Traore, J. Zhejiang Univ. Sci. 6, 999 (2005).CrossRefGoogle Scholar
  10. 10.
    V. Micic, Z. Lepojevic, M. Jotanoviae, G. Tadic, and B. Pejovic, J. Appl. Sci. 11, 3630 (2011).CrossRefGoogle Scholar
  11. 11.
    Patent WO 071755 (2012).Google Scholar
  12. 12.
    A. M. Aliev and G. V. Stepanov, Sverkhkrit. Fluidy: Teor. Prakt. 1 (1), 101 (2006).Google Scholar
  13. 13.
    I. N. Glazkov, I. A. Revel’skii, S. V. Kuzyakin, M. P. Kuznetsov, A. A. Bogdanov, A. A. Martynov, I. P. Efimov, and Yu. A. Zolotov, Sverkhkrit. Fluidy: Teor. Prakt. 1 (1), 52 (2006).Google Scholar
  14. 14.
    A. V. Lekar’, S. N. Borisenko, E. V. Maksimenko, R. N. Borisenko, E. V. Vetrova, N. I. Borisenko, and V. I. Minkin, Sverkhkrit. Fluidy: Teor. Prakt. 3 (2), 33 (2008).Google Scholar
  15. 15.
    O. V. Filonova, S. N. Borisenko, E. V. Maksimenko, R. N. Borisenko, A. V. Lekar’, N. I. Borisenko, and V. I. Minkin, Sverkhkrit. Fluidy: Teor. Prakt. 3 (2), 37 (2008).Google Scholar
  16. 16.
    I. N. Zilfikarov and A. M. Aliev, Sverkhkrit. Fluidy: Teor. Prakt. 3 (2), 43 (2008).Google Scholar
  17. 17.
    K. S. Tikhomirova, R. N. Borisenko, E. V. Vetrova, S. N. Borisenko, E. V. Maksimenko, N. I. Borisenko, and V. I. Minkin, Sverkhkrit. Fluidy: Teor. Prakt. 3 (3), 71 (2008).Google Scholar
  18. 18.
    V. F. Ur’yash, A. E. Gruzdeva, N. Yu. Kokurina, N. V. Grishatova, A. V. Ur’yash, and I. G. Karpova, Sverkhkrit. Fluidy: Teor. Prakt. 3 (4), 35 (2008).Google Scholar
  19. 19.
    O. I. Pokrovskii, A. A. Markoliya, F. D. Lepeshkin, I. V. Kuvykin, O. O. Parenago, and S. A. Gonchukov, Russ. J. Phys. Chem. B 3, 1165 (2009).CrossRefGoogle Scholar
  20. 20.
    V. F. Ur’yash, A. E. Gruzdeva, A. V. Ur’yash, A. A. Silkin, and N. Yu. Kokurina, Russ. J. Phys. Chem. B 4, 1097 (2010).CrossRefGoogle Scholar
  21. 21.
    K. S. Tikhomirova, A. V. Lekar, S. N. Borisenko, E. V. Vetrova, N. I. Borisenko, and V. I. Minkin, Russ. J. Phys. Chem. B 4, 1125 (2010).CrossRefGoogle Scholar
  22. 22.
    O. I. Krivonos and G. V. Plaksin, Russ. J. Phys. Chem. B 4, 1171 (2010).CrossRefGoogle Scholar
  23. 23.
    I. A. Platonov, N. V. Nikitchenko, L. A. Onuchak, Yu. I. Arutyunov, V. A. Kurkin, and P. V. Smirnov, Russ. J. Phys. Chem. B 4, 1211 (2010).CrossRefGoogle Scholar
  24. 24.
    S. N. Evstafyev, E. S. Fomina, and E. A. Privalova, Khim. Rastit. Syr’ya 4 (1), 15 (2011).Google Scholar
  25. 25.
    A. F. Dmitruk, Yu. O. Lesishina, and I. I. Volodchenko, Russ. J. Phys. Chem. B 6, 813 (2012).CrossRefGoogle Scholar
  26. 26.
    A. M. Aliev, G. K. Radjabov, and G. V. Stepanov, Russ. J. Phys. Chem. B 7, 795 (2013).CrossRefGoogle Scholar
  27. 27.
    A. V. Lekar, O. V. Filonova, S. N. Borisenko, E. V. Maksimenko, E. V. Vetrova, N. I. Borisenko, and V. I. Minkin, Russ. J. Phys. Chem. B 7, 829 (2013).CrossRefGoogle Scholar
  28. 28.
    V. G. Slutskii, V. N. Bagratashvili, L. I. Krotova, G. V. Mishakov, V. K. Popov, and S. A. Tsyganov, Sverkhkrit. Fluidy: Teor. Prakt. 7 (4), 88 (2012).Google Scholar
  29. 29.
    R. L. Mendes, in Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds, Ed. by J. L. Martinez (CRC Press, Boca Raton, 2008), Ch. 6, p. 189.Google Scholar
  30. 30.
    J. A. Gravitis, Wood Chem., No. 5, 3 (1987).Google Scholar
  31. 31.
    U. Kallavus and J. Gravitis, Khim. Drev., No. 6, 98 (1987).Google Scholar
  32. 32.
    D. S. Argyropoulos, A. Gaspar, and L. Lucia, O. J. Rojas, Chem. Ind. 8, 84 (2006).Google Scholar
  33. 33.
    K. G. Bogolitsyn, Sverkhkrit. Fluidy: Teor. Prakt. 2 (1), 16 (2007).Google Scholar
  34. 34.
    A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Sverkhkrit. Fluidy: Teor. Prakt. 3 (4), 45 (2008).Google Scholar
  35. 35.
    A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Sverkhkrit. Fluidy: Teor. Prakt. 5 (1), 52 (2010).Google Scholar
  36. 36.
    A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Sverkhkrit. Fluidy: Teor. Prakt. 5 (4), 15 (2010).Google Scholar
  37. 37.
    A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Sverkhkrit. Fluidy: Teor. Prakt. 6 (4), 8 (2011).Google Scholar
  38. 38.
    A. D. Ivakhnov, T. E. Skrebets, and K. G. Bogolitsyn, Russ. J. Phys. Chem. B 5, 1250 (2011).CrossRefGoogle Scholar
  39. 39.
    J. Liu and S. Wu, Delignification of Bamboo and Straw Using CO 2 Supercritical Fluid Extraction Technology (Linye Daxue Xuebao, Beijing, 2011).Google Scholar
  40. 40.
    C. Huang, Z. Li, and B. Wang, Preliminary Study on Supercritical Fluid Ammonia Pulping of Bamboo (Zhongguo Zaozhi, 2008).Google Scholar
  41. 41.
    E. Minami and S. Saka, J. Wood Sci. 51, 395 (2005).CrossRefGoogle Scholar
  42. 42.
    US Patent No. 8404051 B2 (2013).Google Scholar
  43. 43.
    US Patent No. 0145094 A1 (2012).Google Scholar
  44. 44.
    D. Argyropoulos, C. Saquing, A. Gaspar, N. Soriano, L. Lucia, and O. Rojas, ACS Symp. Ser. 954, 311 (2007).CrossRefGoogle Scholar
  45. 45.
    M. Xu, S. Zhang, T. Li, Z. Ren, and Y. Yan, Taiyangneng Xuebao 28, 805 (2007).Google Scholar
  46. 46.
    Z. Fang, T. Sato, R. Smith, H. Inomata, K. Arai, and J. Kozinski, Biores. Technol. 99, 3424 (2008).CrossRefGoogle Scholar
  47. 47.
    Q. Lu, Y. Zu, L. Yang, X. Zhao, W. Liu, and B. Zu, Adv. Mater. Res. 233–235, 1642 (2011).CrossRefGoogle Scholar
  48. 48.
    Y. Zu, L. Yang, Q. Lu, B. Zu, C. Zhao, X. Zhao, B. Zhang, Z. Sun, J. Zhang, L. Huang, Y. Zhang, and W. Sun, Method for Preparation of Nanosize Lignin by Superctirical Antisolvent Process (Faming Zhuanli Shenqing, 2011).Google Scholar
  49. 49.
    Wahyudiono and G. M. Mitsuru, Chem. Eng. Process. 47, 1609 (2008).CrossRefGoogle Scholar
  50. 50.
    Wahyudiono, S. Takayuki, and G. M. Mitsuru, Chem. Eng. Technol. 30, 1113 (2007).CrossRefGoogle Scholar
  51. 51.
    A. Liu, L. Meng, and Y. Haung, Chin. Synth. Fiber Industry 27 (3), 43 (2004).Google Scholar
  52. 52.
    L. Zheng, J. Liu, and D. Ma, Textile Res. 2, 11 (2004).Google Scholar
  53. 53.
    Y. Ogihara, R. Smith, H. Inomata, and K. Arai, Cellulose 12, 595 (2005).CrossRefGoogle Scholar
  54. 54.
    F. Rataboul and N. Essayem, Ind. Eng. Chem. Res. 50, 799 (2011).CrossRefGoogle Scholar
  55. 55.
    C. Yin, X. Shen, J. Li, Q. Xu, Q. Peng, and Y. Liu, Preparation Method of Cellulose Carbamate by Using Supercritical Carbon Dioxide (Faming Zhuanli Shenqing Gongkai Shuomingshu, 2006).Google Scholar
  56. 56.
    C. Yin, X. Shen, J. Li, Q. Xu, Q. Peng, and Y. Liu, Eur. Polym. J. 43, 2111 (2007).CrossRefGoogle Scholar
  57. 57.
    C. Yin, X. Shen, J. Li, Q. Xu, Q. Peng, and Y. Liu, Carbohydr. Polym. 67, 147 (2007).CrossRefGoogle Scholar
  58. 58.
    X. Liu, Z. Li, L. Jin, Y. Xia, and T. Meng, Polym. Mater. Sci. Eng. 6, 270 (2005).Google Scholar
  59. 59.
    A. R. C. Duarte, M. D. Gordillo, M. M. Cardoso, A. L. Simplicio, and C. M. M. Duarte, Int. J. Pharm. 311, 50 (2006).CrossRefGoogle Scholar
  60. 60.
    J. Li, Q. Ren, G. Sun, and H. Shen, Application of Ethyl Cellulose in Sustained-Release Drug Delivery Systems (Zhongguo Yaofang, 2008).Google Scholar
  61. 61.
    S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, and L. Heux, Biomacromolecules 10, 2144 (2009).CrossRefGoogle Scholar
  62. 62.
    M. Matsunaga, Y. Kataoka, H. Matsunaga, and H. Matsui, J. Wood Sci. 56, 293 (2010).CrossRefGoogle Scholar
  63. 63.
    A. D. Ivakhnov, T. E. Skrebets, and K. G. Bogolitsyn, Sverkhkrit. Fluidy: Teor. Prakt. 7 (4), 82 (2012).Google Scholar
  64. 64.
    Y. Shi, G. He, W. Shi, W. Zhao, J. Ju, F. Nie, and F. Quan, Chem. Ind. Eng. Progress, No. 1, 121 (2009).Google Scholar
  65. 65.
    US Patent No. 6814914 B2 (2004).Google Scholar
  66. 66.
    H. Maeda, Cellulose Commun. 63, 135 (2006).Google Scholar
  67. 67.
    M. Tabuchi and M. Iwaide, Dried Cellulose Aerogel, its Manufacture from Hydrogel, and Manufacture of the Restored Hydrogel (Jpn. Kokai Tokkyo Koho, 2013).Google Scholar
  68. 68.
    M. Phisalaphong, T. Suwanmajo, and P. Tammarate, J. Appl. Polym. Sci. 107, 3419 (2008).CrossRefGoogle Scholar
  69. 69.
    J. Li, J. Li, and L. Li, J. Southwest Forestry College, No. 5, 75 (2011).Google Scholar
  70. 70.
    M. Matsunaga, Research Trends of Supercritical Carbon Dioxide Treatment Technology Intended for Wood Materials (Mokuzai Kogyo, 2012).Google Scholar
  71. 71.
    S. Kang, K. L. Levien, and J. J. Morrell, Wood Sci. Technol. 39, 328 (2005).CrossRefGoogle Scholar
  72. 72.
    P. F. Schneider and J. J. Morrell, Wood Fiber Sci. 37, 413 (2005).Google Scholar
  73. 73.
    M. Matsunaga, H. Matsunaga, Y. Kataoka, and H. Matsui, J. Wood Sci. 51, 195 (2005).CrossRefGoogle Scholar
  74. 74.
    US Patent No. 20050196539 A1 (2005).Google Scholar
  75. 75.
    M. Matsunaga, H. Matsunaga, I. Momohara, W. Ohmura, H. Matsui, Y. Kataoka, and K. Setoyama, Mokuzai Kogyo 62 (7), 311 (2007).Google Scholar
  76. 76.
    S. A. Eastman, A. J. Lesser, and T. J. McCarthy, in Proceedings of the Annual Technical Conference of Society of Plastics Engineers (Milwaukee, WI, 2008).Google Scholar
  77. 77.
    Wood Treatment Composition Comprising Supercritical Fluid, Antimildew Component and Waterproofing Component, and Process for Antimildew and Waterproofing Treatment of Wood by Using the Same (Faming Zhuanli Shenqing, 2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. G. Bogolitsyn
    • 1
    • 2
  • A. A. Krasikova
    • 1
  • M. A. Gusakova
    • 1
  1. 1.Institute of Ecological Problems of the North, Ural BranchRussian Academy of SciencesArkhangelskRussia
  2. 2.Lomonosov Northern (Arctic) Federal UniversityArkhangelskRussia

Personalised recommendations