Skip to main content
Log in

Latitudinal variations and altitude profiles of ionospheric parameters: Comparison of theoretical and empirical model results

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Using the global numerical upper atmosphere model (UAM), ionospheric electron density variations have been simulated for different seasons as well as low and high solar activities. The UAM results have been compared with the values obtained with IRI-2012 ionospheric model calculations. It has been shown that the UAM results are consistent with the results obtained by the IRI-2012 empirical model for middle and lower latitudes and daytime hours at both low and high solar activity levels with a discrepancy of up to 40% regardless of the season. The difference between UAM and IRI-2012 values calculated for electron density peaks at high latitudes and can be explained by the fact that the empirical model does not reproduce the main ionospheric trough. In addition, there have been large discrepancies in the altitudinal profiles of electron number density for plasmaspheric heights and low solar activity. This discrepancy can be explained by the influence of initial conditions on numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. N. Fatkullin and A. Muradov, Geomagn. Aeron. 13, 442 (1973).

    Google Scholar 

  2. R. E. Dickinson, E. C. Ridley, and R. G. Roble, J. Geophys. Res. A 86, 1499 (1981).

    Article  Google Scholar 

  3. R. W. Schunk, PAGEOPH, 127, 255 (1988).

    Article  CAS  Google Scholar 

  4. T. J. Fuller-Rowell, D. Rees, H. F. Parish, et al., J. Geophys. Res. 96, 1181 (1991).

    Article  Google Scholar 

  5. D. T. Decker, C. E. Valladares, R. Sheehan, et al., Radio Sci. 29, 249 (1994).

    Article  Google Scholar 

  6. C. Peymirat, A. D. Richmond, B. A. Emery, et al., J. Geophys. Res. A 103, 17467 (1998).

    Article  Google Scholar 

  7. W. Wang, PhD Thesis (Univ. Michigan, Ann. Arbor, Michigan, 1998).

    Google Scholar 

  8. J. D. Huba, G. Joyce, J. Krall, et al., Geophys. Rev. Lett. 35, L10102 (2008).

    Article  Google Scholar 

  9. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geophys. 127, 219 (1988).

    Article  CAS  Google Scholar 

  10. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., J. Atmos. Solar-Terr. Phys. 53, 1113 (1991).

    Article  CAS  Google Scholar 

  11. A. A. Namgaladze, O. V. Martynenko, and A. N. Namgaladze, Geomagn. Aeron. Int. 1, 53 (1998).

    Google Scholar 

  12. A. A. Namgaladze, O. V. Martynenko, M. A. Volkov, et al., Vestn. MGTU, No. 1 (2), 23 (1998).

    Google Scholar 

  13. J. M. Picone, A. E. Hedin, D. P. Drob, et al., J. Geophys. Res. 107, SIA 15–1 (2002).

    Google Scholar 

  14. A. E. Hedin, E. L. Fleming, A. H. Manson, et al., J. Atmos. Terrest. Phys. 58, 1421 (1996).

    Article  Google Scholar 

  15. A. G. Burns, W. Wang, M. Wiltberger, et al., J. Geophys. Res. A 113, A05310 (2008).

    Google Scholar 

  16. M. V. Codrescu, C. Fedrizzi, T. J. Fuller-Rowell, et al., Space Weather, No. 10, S02001 (2012).

    Article  Google Scholar 

  17. S. C. Solomon, L. Qian, and A. G. Burns, J. Geophys. Res. 118, 6524 (2013).

    Article  CAS  Google Scholar 

  18. D. Bilitza, D. Altadill, Y. Zhang, et al., J. Space Weather Space Clim., No. 4, A07 (2014).

    Article  Google Scholar 

  19. B. S. Potula, Y. -H. Chu, G. Uma, et al., J. Geophys. Res. A 116, A02310 (2011).

    Google Scholar 

  20. D. Okoh, A. Eze, O. Adedoja, et al., Space Weather, No. 10, S10002 (2012).

    Article  Google Scholar 

  21. Y. Yu, W. Wan, B. Zhao, et al., Space Weather, No. 11 (5), 272 (2013).

    Article  Google Scholar 

  22. A. A. Nusinov, J. Geomagn. Aeron. 24, 529 (1984).

    CAS  Google Scholar 

  23. D. R. Weimer, N. C. Maynard, W. J. Burke, et al., Planet. Space Sci. 438, 1207 (1990).

    Article  Google Scholar 

  24. D. A. Hardy, M. S. Gussenhoven, and E. A. Holeman, J. Geophys. Res. 90, 4229 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Botova.

Additional information

Original Russian Text © M.G. Botova, Yu.V. Romanovskaya, A.A. Namgaladze, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 10, pp. 18–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botova, M.G., Romanovskaya, Y.V. & Namgaladze, A.A. Latitudinal variations and altitude profiles of ionospheric parameters: Comparison of theoretical and empirical model results. Russ. J. Phys. Chem. B 9, 764–769 (2015). https://doi.org/10.1134/S1990793115050164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115050164

Keywords

Navigation