Russian Journal of Physical Chemistry B

, Volume 8, Issue 6, pp 801–806 | Cite as

Supercoiling as a physical mechanism providing a macroscopic scale in supramolecular strings

  • S. V. Stovbun
  • A. A. Skoblin
  • Y. A. Litvin
  • A. A. Kirsankin
  • M. V. Grishin
  • B. R. Shub
  • Y. V. Zubavichus
  • A. A. Veligzhanin
  • L. D. Popov
  • E. A. Raspopova
  • Y. N. Tkachenko
Structure of Chemical Compounds. Spectroscopy

Abstract

Quantum-chemical calculations revealed that chiral and achiral TFAAA molecules combine to form dimers with comparable binding energies. It was experimentally established that solutions of both chiral and achiral TFAAAs contain anisometric structures with a diameter of d ≪ 1 nm and a length of L ∼ 7 nm. It was concluded that the qualitative difference in the pattern of the supramolecular structure of achiral and chiral solutions is formed on a scale from 0.1 to 1 μm. It is theoretically shown that the supercoiling provides an exponential increase in the strength of association in of thin string into a thick one with the length of the string. It was concluded that this mechanism ensures the stabilization of coi1ed strings and the very existence of stable microscopic strings.

Keywords

strings chiral solution achiral solution supercoiling helical connection Euler formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Stovbun, Russ. J. Phys. Chem. B 5, 546 (2011).CrossRefGoogle Scholar
  2. 2.
    S. V. Stovbun and A. A. Skoblin, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., 3, 3 (2012).Google Scholar
  3. 3.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, et al., Dokl. Phys. Chem. 57, 36 (2012).CrossRefGoogle Scholar
  4. 4.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, et al., Russ. J. Phys. Chem. B 7, 1 (2013).CrossRefGoogle Scholar
  5. 5.
    J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).CrossRefGoogle Scholar
  6. 6.
    S. V. Stovbun, A. I. Mikhailov, A. M. Zanin, and R. G. Kostyanovskii, Vestn. MGOU, Ser. Estestv. Nauki, 3, 92 (2011).Google Scholar
  7. 7.
  8. 8.
    S. V. Stovbun, A. M. Zanin, D. S. Skorobogat’ko, et al., Russ. J. Phys. Chem. B 6, 341 (2012).CrossRefGoogle Scholar
  9. 9.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, et al., Russ. J. Phys. Chem. B 5, 1019 (2011).CrossRefGoogle Scholar
  10. 10.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, et al., Byull. Eksp. Biol. Med. 154(7), 41 (2012).Google Scholar
  11. 11.
    D. N. Izraelashvili, Intermolecular and Surface Forces (Nauchnyi mir, Moscow, 2011; Academic Press, London, 1992).Google Scholar
  12. 12.
    A. B. Rubin, Biophysics, Vol. 2: Biophysics of Cellular Processes (Mosk. Gos. Univ., Moscow, 2004) [in Russian].Google Scholar
  13. 13.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, et al., Byull. Eksp. Biol. Med. 153, 820 (2012).Google Scholar
  14. 14.
    I. I. Artobolevskii, Theory of Mechanisms and Machines, The School-Book, 4th ed. (Nauka, Moscow, 1988) [in Russian].Google Scholar
  15. 15.
    T. T. Berezov and B. F. Korovkin, Biological Chemistry (Meditsina, Moscow, 1998) [in Russian].Google Scholar
  16. 16.
    S. V. Stovbun and A. A. Skoblin, Byull. Eksp. Biol. Med., 11, 502 (2011).Google Scholar
  17. 17.
    S. V. Stovbun, A. I. Mikhailov, A. A. Skoblin, et al., Russ. J. Phys. Chem. B 6, 60 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. V. Stovbun
    • 1
  • A. A. Skoblin
    • 1
  • Y. A. Litvin
    • 1
  • A. A. Kirsankin
    • 1
  • M. V. Grishin
    • 1
  • B. R. Shub
    • 1
  • Y. V. Zubavichus
    • 2
  • A. A. Veligzhanin
    • 2
  • L. D. Popov
    • 3
  • E. A. Raspopova
    • 3
  • Y. N. Tkachenko
    • 3
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia
  3. 3.Faculty of ChemistrySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations