Abstract
The problem of the diffusion of particles in a tube consisting of identical units, each composed of a wide and narrow section is solved. With an approach based on reducing the problem to a one-dimensional, the statistics of times of particle transition between adjacent sections is determined, which is a detailed characteristic of the diffusion process. An expression for the effective diffusion coefficient D ef , defining the slow-down of transport due to variations of the tube profile, is derived. It is shown that D ef behaves monotonically with increasing length of both the narrow and wide sections. The predictions of analytical formulas are in good agreement with the results of computer simulation performed by the Brownian dynamics method.
Similar content being viewed by others
References
E. E. Petersen, AIChE J. 4, 343 (1958).
M. H. Jacobs, Diffusion Processes (Springer, New York, 1967).
P. S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner, Chem. Phys. Phys. Chem. 10, 45 (2009).
P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85, 135 (2013).
J. Kärger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1992).
P. S. C. Rao, R. E. Jessup, and T. M. Addiscott, Soil Sci. 133, 342 (1982).
F. Santamaria, S. Wils, E. de Schutter, and G. J. Augustine, Neuron 52, 635 (2006).
B. Hille, Ion Channels of Excitable Membranes (Sinauer Associates Inc., Sunderland, MA, 2001).
A. Fulin’ski and I. D. Kosin’ska, Acta Phys. Polon. B 38, 1631 (2007).
G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature 414(6860), 188 (2001).
W. M. Saltzman, Drug Delivery (Oxford Univ. Press, Oxford, 2001).
R. Zwanzig, J. Phys. Chem. 96, 3926 (1992).
D. Reguera and J. M. Rubí, Phys. Rev. E 64, 061106 (2001).
P. Kalinay and J. K. Percus, J. Chem. Phys. 122, 204701 (2005).
A. Berezhkovskii and A. Szabo, J. Chem. Phys. 135, 074108 (2011).
S. Lifson and J. L. Jackson, J. Chem. Phys. 36, 2410 (1962).
A. M. Berezhkovskii, V. Yu. Zitserman, and S. Y. Shvartsman, J. Chem. Phys. 118, 7146 (2003).
Yu. A. Makhnovskii, A. M. Berezhkovskii, and V. Yu. Zitserman, Russ. J. Phys. Chem. B 3, 313 (2009).
A. M. Berezhkovskii, A. V. Barzykin, and V. Yu. Zitserman, J. Chem. Phys. 131, 224110 (2009).
Yu. A. Makhnovskii, A. M. Berezhkovskii, and V. Yu. Zitserman, Chem. Phys. 367, 110 (2010).
A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Processes (Khimiya, Moscow, 1986) [in Russian].
V. Yu. Zitserman, Yu. A. Makhnovskii, L. Dagdug, and A. M. Berezhkovskii, Russ. J. Phys. Chem. A 82, 2039 (2008).
L. Dagdug, A. M. Berezhkovskii, Yu. A. Makhnovskii, and V. Yu. Zitserman, J. Chem. Phys. 127, 224712 (2007).
A. M. Berezhkovskii, Yu. A. Makhnovskii, M. I. Monine, V. Yu. Zitserman, and S. Y. Shvartsman, J. Chem. Phys. 121, 11390 (2004).
Yu. A. Makhnovskii, A. M. Berezhkovskii, and V. Yu. Zitserman, J. Chem. Phys. 122, 236102 (2005).
A. M. Berezhkovskii, M. I. Monine, C. B. Muratov, and S. Y. Shvartsman, J. Chem. Phys. 124, 036103 (2006).
Yu. A. Makhnovskii, A. M. Berezhkovskii, and V. Yu. Zitserman, Russ. J. Phys. Chem. A 80, 1129 (2006).
H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977).
D. Shoup and A. Szabo, Biophys. J. 40, 33 (1982).
S. M. Bezrukov, A. M. Berezhkovskii, M. A. Pustovoit, and A. Szabo, J. Chem. Phys. 113, 8206 (2000).
Yu. A. Makhnovskii, A. M. Berezhkovskii, L. V. Bogachev, and V. Yu. Zitserman, J. Phys. Chem. B 115, 3992 (2011).
F. Crick, Nature 225(5231), 420 (1970).
Yu. A. Makhnovskii, A. M. Berezhkovskii, and V. Yu. Zitserman, J. Chem. Phys. 131, 104705 (2009).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.E. Antipov, Yu.A. Makhnovskii, V.Yu. Zitserman, S.M. Aldoshin, 2014, published in Khimicheskaya Fizika, 2014, Vol. 33, No. 9, pp. 78–86.
Rights and permissions
About this article
Cite this article
Antipov, A.E., Makhnovskii, Y.A., Zitserman, V.Y. et al. Diffusion in a tube consisting of alternating wide and narrow sections. Russ. J. Phys. Chem. B 8, 752–759 (2014). https://doi.org/10.1134/S1990793114050030
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990793114050030