Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 499–503 | Cite as

Semiempirical law for the dipole moments of low-molecular-weight gelators

  • D. V. ZlenkoEmail author
  • S. V. Stovbun
Electric and Magnetic Properties of Materials

Abstract

Some small chiral organic molecules are capable of forming gel in low-concentration solutions. This phenomenon is of great theoretical interest, but its molecular details are still unclear. High chemical diversity of such gelators impedes the investigation of their common structural properties important for gel formation. Here, we calculated the total dipole moment for a set of gelators with sufficiently different chemical structures by means of molecular dynamics simulations. It was found that all considered molecules have a dipole moment of ∼3 D or more. This means that the energy of the dipole-dipole interaction between two point dipoles at a distance of 6–8 Å is ∼kT. This distance roughly corresponds to molecules in close contact. This makes it possible to conclude that the dipole moment can orient gelator molecules before aggregation, thereby playing a key role in the process of gelation. This orientation effect determines the anisotropy of aggregates and the gelation of the solution.

Keywords

dipole moment gelation percolation threshold molecular simulation molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. George and R. G. Weiss, Acc. Chem. Res. 39, 489 (2006).CrossRefGoogle Scholar
  2. 2.
    X. Huang, P. Terech, S. R. Raghavan, and R. G. Weiss, J. Am. Chem. Soc. 127, 4336 (2005).CrossRefGoogle Scholar
  3. 3.
    P. Terech and R. G. Weiss, Chem. Rev. 97, 3133 (1997).CrossRefGoogle Scholar
  4. 4.
    A. A. Bredikhin, Z. A. Bredikhina, F. S. Akhatova, and A. T. Gubaidullin, Chem. Commun. 46, 3523 (2010).CrossRefGoogle Scholar
  5. 5.
    G. John, B. V. Shankar, S. R. Jadhav, and P. K. Vemula, Langmuir 26, 17843 (2010).CrossRefGoogle Scholar
  6. 6.
    D. K. Smith, Chem. Soc. Rev. 38, 684 (2009).CrossRefGoogle Scholar
  7. 7.
    C. Zhan, P. Gao, and M. Liu, Chem. Commun., 462 (2004).Google Scholar
  8. 8.
    M. Cote, T. Nicholls, D. W. Knight, et al., Langmuir 25, 8678 (2009).CrossRefGoogle Scholar
  9. 9.
    S. V. Stovbun, O. N. Krutius, A. M. Zanin, D. S. Skorobogat’ko, and R. G. Kostyanovskii, Russ. J. Phys. Chem. B 5, 846 (2011).CrossRefGoogle Scholar
  10. 10.
    S. V. Stovbun, Russ. J. Phys. Chem. B 5, 546 (2011).CrossRefGoogle Scholar
  11. 11.
    S. V. Stovbun, A. M. Zanin, D. S. Skorobogat’ko, et al., Russ. J. Phys. Chem. B 6, 341 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Gansäuer, I. Winkler, T. Klawonn, et al., Organometallics 28, 1377 (2008).CrossRefGoogle Scholar
  13. 13.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, and A. A. Berlin, Dokl. Phys. Chem. 442, 36 (2012).CrossRefGoogle Scholar
  14. 14.
    S. V. Stovbun, Doctoral Dissertation in Mathematics and Physics (Inst. Chem. Phys. RAS, Moscow, 2012).Google Scholar
  15. 15.
    D. A. Fridrikhsberg, Course of Colloid Chemistry (Lan’, St.-Petersburg, 2010) [in Russian].Google Scholar
  16. 16.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, et al., Izmer. Tekh., No. 6, 70 (2012).Google Scholar
  17. 17.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).CrossRefGoogle Scholar
  18. 18.
    C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem. 97, 10269 (1993).CrossRefGoogle Scholar
  19. 19.
    A. A. Granovsky, Firefly, Vers. 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html
  20. 20.
    S. Pronk, S. Pall, R. Schulz, et al., Bioinformatics 29, 845 (2013).CrossRefGoogle Scholar
  21. 21.
    U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
  22. 22.
    V. I. Minkin, O. A. Osipov, and Yu. A. Zhdanov, Dipole Moments in Organic Chemistry (Khimiya, Leningrad, 1968) [in Russian].Google Scholar
  23. 23.
    A. Yu. Tsivadze, Structure Self-Organization in Solutions and at the Phase Interface (LKI, Moscow, 2008) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations