Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 492–498 | Cite as

Enhanced Al-H2O-based fuels combustion characteristics with polyacrylamide at low pressures

  • Baozhong Zhu
  • Yunlan SunEmail author
  • Huajian Sun
Combustion, Explosion, and Shock Waves

Abstract

The combustion behavior of nano-aluminum-water (n-Al-H2O) mixture with addition of polyacrylamide (PAM) was investigated in argon at 0.1∼1.5 MPa using a constant-pressure strand burner. The burning rates of n-Al-H2O mixture were measured. The results show that PAM addition can not only help improve the burning rate of n-Al-H2O mixture, but also decrease the pressure index of burning rate. The mixture of n-Al powder and H2O cannot be ignited in argon at 0.1 MPa, but the mixture of n-Al powder and H2O with the 3 wt % PAM can be ignited, and the mixture can support the self-sustaining combustion. The burning rate is 7.64 mm/s. Moreover, the burning rate increases with increasing the pressure. In addition, the combustion process and flame image characteristics were obtained by a high-speed photography technique, and the element composition and surface morphology of the condensed combustion products were evaluated using a scanning electron microscopy combined with energy dispersive X-ray system.

Keywords

combustion characteristics nano-aluminum powder water PAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ingenito and B. Claudio, J. Propuls. Power 20, 1056 (2004).CrossRefGoogle Scholar
  2. 2.
    Y. L. Sun and B. Z. Zhu, Ind. Eng. Chem. Res. 50, 14136 (2011).CrossRefGoogle Scholar
  3. 3.
    E. Shafirovich, V. Diakov, and A. Varma, Combust. Flame 144, 415 (2006).CrossRefGoogle Scholar
  4. 4.
    R. J. Gill, C. Badiola, and E. L. Dreizin, Combust. Flame 157, 2015 (2010).CrossRefGoogle Scholar
  5. 5.
    C. Badiola, R. J. Gill, and E. L. Dreizin, Combust. Flame 158, 2064 (2011).CrossRefGoogle Scholar
  6. 6.
    T. Bazyn, H. Krier, and N. Glumac, Proc. Combust. Inst. 31, 2021 (2007).CrossRefGoogle Scholar
  7. 7.
    S. Gallier, F. Sibe, and O. Orlandi, Proc. Combust. Inst. 33, 1949 (2011).CrossRefGoogle Scholar
  8. 8.
    T. Bazyn, H. Krier, and N. Glumac, Combust. Flame 145, 703 (2006).CrossRefGoogle Scholar
  9. 9.
    F. Franzoni, M. Milani, L. Montorsi, and V. Golovitchev, Int. J. Hydrogen Energy 35, 1548 (2010).CrossRefGoogle Scholar
  10. 10.
    S. Álvarez-Barcia and J. R. Flores, Chem. Phys. 374, 131 (2010).CrossRefGoogle Scholar
  11. 11.
    T. F. Miller and J. D. Herr, AIAA J., 2004-4037 (2004).Google Scholar
  12. 12.
    A. Sharipov, N. Titova, and A. Starik, J. Phys. Chem. A 115, 4476 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. L. Sun, Y. Tian, and S. F. Li, Chin. J. Chem. Phys 21, 245 (2008).CrossRefGoogle Scholar
  14. 14.
    G. A. Risha, J. L. Sabourin, V. Yang, et al., Combust. Sci. Technol. 180, 2127 (2008).CrossRefGoogle Scholar
  15. 15.
    G. A. Risha, S. F. Son, R. A. Yetter, et al., Proc. Combust. Inst. 31, 2029 (2007).CrossRefGoogle Scholar
  16. 16.
    J. L. Sabourin, G. A. Risha, R. A. Yetter, et al., Combust. Flame 154, 587 (2008).CrossRefGoogle Scholar
  17. 17.
    V. G. Ivanov, O. V. Gavrilyuk, O. V. Glaskov, et al., Combust. Explos. Shock Waves 36, 213 (2000).CrossRefGoogle Scholar
  18. 18.
    Y. L. Sun, B. Z. Zhu, H. C. Dang, et al., J. Mater. Sci. 46, 4471 (2011).CrossRefGoogle Scholar
  19. 19.
    V. A. Babuk, I. N. Dolotkazin, and A. A. Glebov, Propell. Explos. Pyrotech. 30, 281 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.School of Energy and EnvironmentAnhui University of TechnologyMaanshan, AnhuiChina
  2. 2.Jigang Group Heavy Machinery CO., LTDJinan, ShandongChina

Personalised recommendations