Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 549–553 | Cite as

Regulation of chicken egg lysozyme functional properties by interaction with 5-methylresorcinol

  • E. I. MartirosovaEmail author
  • I. G. Plashchina
  • N. G. Loiko
  • M. A. Krasnova
  • G. I. El’-Registan
Chemical Physics of Biological Processes


The surface activity and dynamics of adsorption surface layer formation of individual solutions of 5-methylresorcinol (MR) and its mixed solutions with lysozyme on air/solution (0.05 M phosphate buffer, pH 6.0) interface under conditions of MR maximally exceeding hydrolytic activity of lysozyme are studied using method of dynamic drop tensiometry. The thermodynamic parameters of adsorption are determined based on the isotherms. It is established that MR possesses lower surface activity in comparison to traditional surfactants. Methylresorcinol increases the surface activity and lysozyme adsorption rate at the air/solution interface in the entire concentration range covered.


lysozyme alkylresorcinols 5-methylresorcinol chitin enzymatic activity dynamic surface tension adsorption thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. I. El’-Registan, A. L. Mulyukin, Yu. A. Nikolaev, et al., Microbiology 75, 380 (2006).CrossRefGoogle Scholar
  2. 2.
    E. I. Martirosova, T. A. Karpekina, and G. I. El’-Registan, Microbiology 73, 609 (2004).CrossRefGoogle Scholar
  3. 3.
    A. S. Petrovskii, D. G. Deryabin, N. G. Loiko, et al., Microbiology 78, 144 (2009).CrossRefGoogle Scholar
  4. 4.
    I. P. Solyanikova, E. I. Konovalova, G. I. El’-Registan, et al., J. Environ. Sci. Health B 45, 844 (2010).CrossRefGoogle Scholar
  5. 5.
    D. G. Deryabin, N. A. Romanenko, T. G. Sviridova, et al., Vopr. Biol., Med. Farmats. Khim., No. 2, 38 (2012).Google Scholar
  6. 6.
    P. P. Knox, E. P. Lukashev, A. V. Simanova, et al., Microbiology 79, 262 (2010).CrossRefGoogle Scholar
  7. 7.
    Yu. F. Krupyanskii, P. P. Knox, N. G. Loiko, et al., Biophysics 56, 8 (2011).CrossRefGoogle Scholar
  8. 8.
    N. A. Feoktistova, E. I. Martirosova, and I. G. Plashchina, in Perspective Enzymatic Preparations and Biotechnological Processes in Technologies of Foodstuff and Foods (VNIIPBT, Moscow, 2012), p. 106 [in Russian].Google Scholar
  9. 9.
    V. B. Fainerman, A. V. Makievski, and R. Miller, Colloids Surf. A: Physicochem. Eng. Aspects 87, 61 (1994).CrossRefGoogle Scholar
  10. 10.
    U. Dash and P. K. Misra, J. Colloid Interface Sci. 357, 407 (2011).CrossRefGoogle Scholar
  11. 11.
    T. Zhou, H. Yang, X. Xu, X. Wang, J. Wang, and G. Dong, Colloids Surf. A: Physicochem. Eng. Aspects 317, 339 (2008).CrossRefGoogle Scholar
  12. 12.
    F. Yang, G. Li, J. Qi, S.-M. Zhang, and R. Liu, Appl. Surf. Sci. 257, 312 (2010).CrossRefGoogle Scholar
  13. 13.
    C. D. Di Mattia, G. Sacchetti, D. Mastrocola, D. K. Sarker, and P. Pittia, Food Hydrocolloids 24, 652 (2010).CrossRefGoogle Scholar
  14. 14.
    J. R. Hunter, P. K. Kilpatrick, and R. G. Carbonell, J. Colloid Interface Sci. 137, 462 (1990).CrossRefGoogle Scholar
  15. 15.
    S. E. Harding and A. J. Rowe, Int. J. Biol. Macromol. 4, 160 (1982).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. I. Martirosova
    • 1
    Email author
  • I. G. Plashchina
    • 1
  • N. G. Loiko
    • 2
  • M. A. Krasnova
    • 3
  • G. I. El’-Registan
    • 2
  1. 1.Emanuel Institute of Biochemical Physics of Russian Academy of SciencesMoscowRussia
  2. 2.Vinogradsky Institute of Microbiology of Russian Academy of SciencesMoscowRussia
  3. 3.Moscow State University of Food ProductionMoscowRussia

Personalised recommendations