Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 534–542 | Cite as

Influence of small-molecule ligands and their complexes on lysozyme properties

  • K. B. Tereshkina
  • A. S. Stepanov
  • D. O. Sinitsyn
  • Yu. F. KrupyanskiiEmail author
Chemical Physics of Biological Processes
  • 55 Downloads

Abstract

The structure of complexes of various alkylhydroxybenzenes, such as 4-hexylresorcinol, 5-methyl-resorcinol, and tyrosol, is studied using experimental and theoretical methods. The influence of 4-hexyl-resorcinol and 5-methylresorcinol in a wide range of concentrations on the structure, equilibrium fluctuations, and functional activity of a water-soluble enzyme lysozyme is examined. A spatial model for the interaction of ligands and clusters thereof with the protein and the aqueous medium is constructed. A possible mechanism of the stabilization of the protein tertiary structure by the aforementioned molecules is proposed.

Keywords

5-methylresorcinol 4-hexylresorcinol tyrosol small-molecule ligands protein stabilization chemical chaperones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Welch and C. R. Brown, Cell Stress Chaperones 1, 109 (1996).CrossRefGoogle Scholar
  2. 2.
    J. Tatzelt, S. B. Prusiner, and W. J. Welch, EMBO J. 15, 6363 (1996).Google Scholar
  3. 3.
    A. V. Finkelstein and O. B. Ptitsyn, Protein Physics, Course of Lectures, 2nd ed. (Universitet, Moscow, 2002), p. 374 [in Russian].Google Scholar
  4. 4.
    A. Smith, Nature 426(6968), 883 (2003).CrossRefGoogle Scholar
  5. 5.
    C. M. Dobson, Nature 426(6968), 884 (2003).CrossRefGoogle Scholar
  6. 6.
    F. E. Cohen and J. W. Kelly, Nature 426, 905 (2003).CrossRefGoogle Scholar
  7. 7.
    J. P. Morello, U. E. Petajea-Repo, D. G. Bichet, and M. Bouvier, TIPS 21, 466 (2000).Google Scholar
  8. 8.
    A. Kozubek and J. H. P. Tyman, Chem. Rev. 99, 1 (1999).CrossRefGoogle Scholar
  9. 9.
    PubChem, Data Base of Biologic Activity of Small Molecules. http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=10436/
  10. 10.
    G. I. El-Registan, A. L. Mulyukin, Yu. A. Nikolaev, et al., Microbiology 75, 380 (2006).CrossRefGoogle Scholar
  11. 11.
    Yu. F. Krupyanskii, E. G. Abdulnasyrov, N. G. Loiko, et al., Russ. J. Phys. Chem. B 31, 301 (2012).CrossRefGoogle Scholar
  12. 12.
    Yu. F. Krupyanskii, P. P. Noks, N. G. Loiko, et al., Biophysics 56, 8 (2011).CrossRefGoogle Scholar
  13. 13.
    K. B. Tereshkina and Yu. F. Krupyanskii, in Proceedings of the 20th Conference on Mathematics. Computer. Education (OIYaI, Dubna, 2013), p. 37.Google Scholar
  14. 14.
    A. I. Kolpakov, O. N. Il’inskaya, M. M. Bespalov, et al., Microbiology 69, 180 (2000).CrossRefGoogle Scholar
  15. 15.
    I. Yu. Stepanenko, M. L. Shishkina, E. I. Martirosova, et al., in Proceedings the All-Russia Scientific-Technical Conference and Exhibition on High Effective Food Technologies, Methods and Means of their Realization (MGUPP, Moscow, 2003), p. 195.Google Scholar
  16. 16.
    Yu. A. Nikolaev, N. G. Loiko, I. Yu. Stepanenko, et al., Prikl. Biokhim. Mikrobiol. 44(2), 159 (2008).Google Scholar
  17. 17.
    Yu. F. Krupyanskii, G. V. Eshchenko, S. V. Esin, et al., Biophysics 50, 865 (2005).Google Scholar
  18. 18.
    Yu. F. Krupyanskii, M. G. Mikhailyuk, S. V. Esin, et al., Biophysics 51, 8 (2006).CrossRefGoogle Scholar
  19. 19.
    A. Guinier, X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies (Dunod, Paris, 1956; Freeman, New York, 1963; Fizmatgiz, Moscow, 1961).Google Scholar
  20. 20.
    R. W. James, The Optical Principle of the Diffraction of X-Rays (Bell, London, 1950).Google Scholar
  21. 21.
    A. I. Kitaigorodskii, X-Ray-Structural Analysis of Fine-Crystalline and Amorphous Bodies (Gostekhteoretizdat, Moscow, 1953) [in Russian].Google Scholar
  22. 22.
    M. Kakudo and N. Kasai, X-Ray Diffraction by Polymers (Elsevier, Amsterdam, London, New York, 1972).Google Scholar
  23. 23.
    B. E. Warren and N. S. Gingrich, Phys. Rev. 46, 368 (1934).CrossRefGoogle Scholar
  24. 24.
    V. V. Volkov, in Proceedings of the 5th National Conference on Application of X-Ray and Synchrotron Radiation, Neutrons and Electrons for Material Research RSNE-2005 (IK RAN, Moscow, 2005), p. 51.Google Scholar
  25. 25.
    D. I. Svergun and L. A. Feigin, Small-Angle X-ray and Neutron Scattering (Nauka, Moscow, 1986) [in Russian].Google Scholar
  26. 26.
    R. L. Messbauer, Khim. Fiz. 1, 1297 (1982).Google Scholar
  27. 27.
    Yu. F. Krupyanskii, F. Parak, V. I. Goldanskii, et al., Z. Naturforch. 37, 57 (1982).Google Scholar
  28. 28.
    V. I. Goldanskii and Yu. F. Krupyanskii, Quart. Rev. Biophys. 22, 39 (1989).CrossRefGoogle Scholar
  29. 29.
    Yu. F. Krupyanskii, V. I. Goldanskii, G. U. Nienhaus, and F. Parak, Hyperfine Interact. 53, 59 (1990).CrossRefGoogle Scholar
  30. 30.
    Yu. F. Krupyanskii, K. V. Shaitan, I. V. Kurinov, et al., Biofizika 33, 401 (1988).Google Scholar
  31. 31.
    Yu. F. Krupyanskii and V. I. Goldanskii, in Proceedings of the International School of Physics “Enrico Fermi” (IOS Press, Amsterdam, 2001), p. 25.Google Scholar
  32. 32.
    Yu. F. Krupyanskii, P. P. Noks, N. G. Loiko, et al., Biophysics 56, 8 (2011).CrossRefGoogle Scholar
  33. 33.
    J. A. McCammon, Rep. Prog. Phys. 41, 1 (1984).CrossRefGoogle Scholar
  34. 34.
    M. Karplus and G. A. Petsko, Nature 347, 631 (1990).CrossRefGoogle Scholar
  35. 35.
    K. V. Shaitan and K. B. Tereshkina, Molecular Dynamics of Proteins and Peptides (Oikos, Moscow, 2004) [in Russian].Google Scholar
  36. 36.
    B. Hess, C. Kutzner, D. van der Spoel, et al., J. Chem. Theory Comput. 4, 435 (2008).CrossRefGoogle Scholar
  37. 37.
    A. A. Granovsky, Firefly Vers. 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html
  38. 38.
    Q. Zou, B. J. Bennion, V. Daggett, and K. P. Murphy, J. Am. Chem. Soc. 124, 1192 (2002).CrossRefGoogle Scholar
  39. 39.
    P. J. Artymiuk, C. C. F. Blake, D. W. Rice, and K. S. Wilson, Acta Crystallogr. 38, 778 (1982).CrossRefGoogle Scholar
  40. 40.
    S. E. Boyce, D. L. Mobley, G. J. Rocklin, et al., J. Mol. Biol. 394, 747 (2009).CrossRefGoogle Scholar
  41. 41.
    A. V. Geliev, Kh. D. Do, B. V. Egorov, et al., Russ. J. Phys. Chem. B 30, 124 (2011).CrossRefGoogle Scholar
  42. 42.
    A. G. Murzin and A. V. Finkelstein, J. Mol. Biol. 204, 749 (1988).CrossRefGoogle Scholar
  43. 43.
    I. G. Plashchina, I. L. Zhuravleva, E. I. Martirosova, et al., Biotechnology, Biodegradation, Water and Foodstuff (Nova Science, New York, 2009), p. 45.Google Scholar
  44. 44.
    A. Mukherjee, P. Grobelny, T. S. Thakur, and G. R. Desiraju, Cryst. Growth Des. 11, 2637 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • K. B. Tereshkina
    • 1
  • A. S. Stepanov
    • 1
  • D. O. Sinitsyn
    • 1
  • Yu. F. Krupyanskii
    • 1
    Email author
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations