Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 457–463 | Cite as

New possibilities of X-ray nanocrystallography of biological macromolecules based on X-ray free-electron lasers

  • D. O. SinitsynEmail author
  • V. Yu. Lunin
  • A. N. Grum-Grzhimailo
  • E. V. Gryzlova
  • N. K. Balabaev
  • N. L. Lunina
  • T. E. Petrova
  • K. B. Tereshkina
  • E. G. Abdulnasyrov
  • A. S. Stepanov
  • Yu. F. Krupyanskii
Structure of Chemical Compounds. Spectroscopy

Abstract

X-ray serial nanocrystallography is a new technique for determining the three-dimensional structure of biological macromolecules from data on the diffraction of ultrashort pulses generated by X-ray free-electron lasers. The maximum achievable resolution for a set of experimental data as a function of the sample sizes and parameters of the equipment is estimated based on simulations of the diffraction process with allowance for changes in the electronic structure of the atoms of the sample under the influence of X-rays. Estimates show that nanocrystallography greatly enhances the possibilities of X-ray analysis, reducing the requirements for the minimum permitted size of the crystals and enabling to explore poorly crystallizable molecular objects, such as many membrane proteins and complexes of macromolecules.

Keywords

diffraction crystallography X-ray diffraction X-ray free electron laser radiation damage resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Emma, R. Akre, J. Arthur, et al., Nature Photon. 4, 641 (2010).CrossRefGoogle Scholar
  2. 2.
    A. M. Kondratenko and E. L. Saldin, Part. Accel. 10, 207 (1980).Google Scholar
  3. 3.
    R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, Nature 406, 752 (2000).CrossRefGoogle Scholar
  4. 4.
    C. Caleman, G. Huldt, F. R. N. C. Maia, et al., ACS Nano 5, 139 (2011).CrossRefGoogle Scholar
  5. 5.
    H. N. Chapman, P. Fromme, A. Barty, et al., Nature 470, 73 (2011).CrossRefGoogle Scholar
  6. 6.
    S. Boutet, L. Lomb, G. J. Williams, et al., Science 337, 362 (2012).CrossRefGoogle Scholar
  7. 7.
    L. Redecke, K. Nass, D. P. DePonte, et al., Science 339, 227 (2013).CrossRefGoogle Scholar
  8. 8.
    L. Lomb, T. R. M. Barends, S. Kassemeyer, et al., Phys. Rev. B 84, 214111 (2011).CrossRefGoogle Scholar
  9. 9.
    S.-K. Son, L. Young, and R. Santra, Phys. Rev. A 83, 033402 (2011).CrossRefGoogle Scholar
  10. 10.
    U. Lorenz, N. M. Kabachnik, E. Weckert, and I. A. Vartanyants, Phys. Rev. E 86, 051911 (2012).CrossRefGoogle Scholar
  11. 11.
    V. Yu. Lunin, A. N. Grum-Grzhimailo, E. V. Gryzlova, et al., Mat. Biol. Bioinform. 8(1), 93 (2013).Google Scholar
  12. 12.
    B. K. Vainshtein, Modern Crystallography (Nauka, Moscow, 1979), Vol. 1 [in Russian].Google Scholar
  13. 13.
    D. Greiffenberg, in Proceedings of the 13th International Workshop on Radiation Imaging Detectors (IOP Publ. for SISSA, 2011). http://iopscience.iop.org/1748-0221/7/01/C01103/ Google Scholar
  14. 14.
    J. Feldhaus, E. L. Saldin, J. R. Schneider, et al., Opt. Commun. 140, 341 (1997).CrossRefGoogle Scholar
  15. 15.
    G. Geloni, V. Kocharyan, and E. Saldin, http://arxiv.org/abs/1007.2743v1.

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. O. Sinitsyn
    • 1
    Email author
  • V. Yu. Lunin
    • 2
  • A. N. Grum-Grzhimailo
    • 3
  • E. V. Gryzlova
    • 3
  • N. K. Balabaev
    • 2
  • N. L. Lunina
    • 2
  • T. E. Petrova
    • 2
  • K. B. Tereshkina
    • 1
  • E. G. Abdulnasyrov
    • 1
  • A. S. Stepanov
    • 1
  • Yu. F. Krupyanskii
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Mathematical Problems of BiologyRussian Academy of SciencesPushchino, Moscow RegionRussia
  3. 3.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations