Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 559–565 | Cite as

Positronium formation and thermostimulated luminescence: A common nature and combined application to studies of organic systems

  • V. P. ShantarovichEmail author
  • V. W. Gustov
  • E. V. Belousova
  • A. V. Polyakova
  • V. G. Bekeshev
  • I. B. Kevdina
Chemical Physics of Polymer Materials


Polymeric membrane materials with highly developed intrinsic microporosity for gas separation are studied. The porosity can be essentially improved by filling the polymer with nonorganic components (zeolites). This porosity, herein referred to as artificially induced, turned out, in some cases, to be higher than that of the constituent components. The reasons for this effect are not always clear. To gain additional insights into the nature of this effect, an experimental study is suggested with the use of a combination of two methods related by being based on track processes: positron annihilation lifetime spectroscopy PALS and thermostimulated luminescence (TSL). The present paper summarizes and discusses both recently published results and completely new data.


annihilation positron thermostimulated luminescence membrane materials free volume permeability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Rudel, J. Krause, K. Ratzke, M. Faupel, et al., Macromolecules 41, 788 (2008).CrossRefGoogle Scholar
  2. 2.
    V. P. Shantarovich, T. Suzuki, Y. Ito, et al., Phys. Status Solidi C 4, 3776 (2007).CrossRefGoogle Scholar
  3. 3.
    V. P. Shantarovich, J. Polym. Sci., Part B: Polym. Phys. 46, 2485 (2008).CrossRefGoogle Scholar
  4. 4.
    M. H. Weber and K. G. Lynn, in Principles and Applications of Positron and Positronium Chemistry, Ed. by Y. C. Jean, P. E. Mallon, and D. M. Schrader (World Scientific, New Jersey, London, Singapore, Hong Kong, 2003), p. 167.Google Scholar
  5. 5.
    P. Winberg, K. Desitter, C. Datremont, et al., Macromolecules 38, 3776 (2005).CrossRefGoogle Scholar
  6. 6.
    A. F. Bushell, M. P. Attfield, C. R. Mason, et al., J. Membr. Sci. 427, 48 (2013).CrossRefGoogle Scholar
  7. 7.
    V. P. Shantarovich, V. W. Gustov, T. I. Medintseva, et al., Mater. Sci. Forum 666, 81 (2011).Google Scholar
  8. 8.
    S. Claes, P. Vanderzande, S. Mullens, et al., Macromolecules 44, 2766 (2011).CrossRefGoogle Scholar
  9. 9.
    V. Shantarovich, V. Gustov, A. Polyakova, et al., Phys. Status Solidi C 6, 2387 (2009).CrossRefGoogle Scholar
  10. 10.
    A. V. Tokarev, G. N. Bondarenko, and Yu. P. Yampolskii, Polymer Sci., Ser. A 49, 909 (2007).CrossRefGoogle Scholar
  11. 11.
    P. M. Budd, K. J. Msaib, C. S. Tattershall, et al., J. Membr. Sci. 251, 263 (2005).CrossRefGoogle Scholar
  12. 12.
    O. E. Mogensen, in Positron Annihilation in Chemistry, Ed. by V. I. Goldanskii and F. P. Schaffer (Springer, Berlin, Heidelberg, New York, 1995), p. 66.Google Scholar
  13. 13.
    T. Hirade, F. H. J. Maurer, and M. E. Eldrup, Rad. Phys. Chem. 58, 465 (2000).CrossRefGoogle Scholar
  14. 14.
    V. P. Shantarovich, T. Hirade, I. B. Kevdina, et al., Acta Phys. Polon. A 99, 497 (2001).Google Scholar
  15. 15.
    Y. Ito, T. Hirade, E. Hamada, et al., Acta Phys. Polon. A 95, 433 (1999).Google Scholar
  16. 16.
    V. G. Nikolskii, Khim. Vys. Energ., No. 2, 271 (1968).Google Scholar
  17. 17.
    V. G. Nikolskii, Pure Appl. Chem. 54, 493 (1982).Google Scholar
  18. 18.
    V. P. Shantarovich, R. S. Yu, Ya. Kino, et al., Khim. Vys. Energ. 45(4), 1 (2011).Google Scholar
  19. 19.
    D. Hofmann, M. Heuchel, Yu. Yampolskii, V. Khotimskii, and V. Shantarovich, Macromolecules 35, 2129 (2002).CrossRefGoogle Scholar
  20. 20.
    V. P. Shantarovich, T. Suzuki, C. He, et al., Macromolecules 35, 9723 (2002).CrossRefGoogle Scholar
  21. 21.
    D. Hofmann, M. Entrialgo Costano, A. Lerbert, et al., Macromolecules 36, 8528 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. P. Shantarovich
    • 1
    Email author
  • V. W. Gustov
    • 1
  • E. V. Belousova
    • 1
  • A. V. Polyakova
    • 1
  • V. G. Bekeshev
    • 1
  • I. B. Kevdina
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations