Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 524–533 | Cite as

Molecular structure and the dynamics of the functioning of conformationally mobile systems

  • K. V. ShaitanEmail author
Chemical Physics of Biological Processes

Abstract

The state of art of research on the dynamics of biomacromolecules and complexes thereof is briefly outlined. Emphasis is placed on the work conduced over the last 30 years at Lomonosov Moscow State University and Semenov Institute of Chemical Physics RAS. The physical mechanisms of fluctuation dynamics on the angstrom and subangstrom levels in condensed matter are considered based on Mössbauer spectroscopy and molecular dynamics modeling. The results of all-atom simulations of the functioning of ion channels obtained on a “Lomonosov” supercomputer (MSU) are reported. The self-organizing dynamics of macromolecular structures is examined for model polymer structures and nanostructures. The topology of multidimensional energy surfaces for conformationally mobile systems and its influence on the dynamic properties of objects are considered. In conclusion, the dynamics of functioning of simple molecular machines based on catenanes and rotaxanes and the role of conformational mobility in ensuring their operation are discussed.

Keywords

molecular dynamics conformational mobility the Mössbauer effect in proteins X-ray lasers molecular machines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Case and M. Karplus, J. Mol. Biol. 132, 343 (1979).CrossRefGoogle Scholar
  2. 2.
    R. L. Moessbauer, Hyperfine Interact. 33, 199 (1987).CrossRefGoogle Scholar
  3. 3.
    K. V. Shaitan and A. B. Rubin, Mol. Biol. 14, 1323 (1980).Google Scholar
  4. 4.
    Yu. F. Krupyanskii and V. I. Gol’danskii, Phys. Usp. 45, 1131 (2002).CrossRefGoogle Scholar
  5. 5.
    K. V. Shaitan and A. B. Rubin, Biofizika 25, 796 (1980).Google Scholar
  6. 6.
    K. V. Shaitan and S. S. Saraikin, Biophysics 45, 397 (2000).Google Scholar
  7. 7.
    K. V. Shaitan, M. G. Mikhailyuk, A. S. Plachinda, and V. I. Khromov, Russ. Chem. Bull. 51, 2196 (2002).CrossRefGoogle Scholar
  8. 8.
    A. V. Belyakov and R. N. Kuz’min, Mössbauerography (Znanie, Moscow, 1979) [in Russian].Google Scholar
  9. 9.
  10. 10.
    K. V. Shaitan, M. P. Kirpichnikov, V. S. Lamzin, et al., Vestn. RFFI, No. 4, 22 (2013).Google Scholar
  11. 11.
    H. N. Chapman, P. Fromme, A. Barty, et al., Nature 470, 73 (2011).CrossRefGoogle Scholar
  12. 12.
    K. V. Shaitan, A. K. Shaitan, D. V. Bagrov, et al., Nanostrukt. Mat. Fiz. Model. 9(2), 33 (2013).Google Scholar
  13. 13.
  14. 14.
    E. H. Lee, J. Hsin, M. Sotomayor, et al., Structure 17, 1295 (2009).CrossRefGoogle Scholar
  15. 15.
    M. O. Jensen, V. Jogini, D. W. Borhani, et al., Science 336, 229 (2012).CrossRefGoogle Scholar
  16. 16.
    K. V. Shaitan, E. V. Turlei, D. N. Golik, et al., Zh. Ross. Khim. Obshch. 50(2), 53 (2006).Google Scholar
  17. 17.
    K. V. Shaitan, E. V. Turlei, D. N. Golik, et al., Khim. Fiz. 25(9), 31 (2006).Google Scholar
  18. 18.
    D. Yu. Mordvitsev, Ya. L. Polyak, D. A. Kuzmin, et al., Comput. Biol. Chem. 31, 72 (2007).CrossRefGoogle Scholar
  19. 19.
    K. V. Shaitan, A. Li, K. B. Tereshkina, and M. P. Kirpichnikov, Biophysics 52, 301 (2007).CrossRefGoogle Scholar
  20. 20.
    K. V. Shaitan, M. Yu. Antonov, E. V. Turlei, et al., Biol. Membr. 25, 75 (2008).Google Scholar
  21. 21.
    A. V. Popinako, O. V. Levtsova, M. Yu. Antonov, et al., Biophysics 56, 1078 (2011).CrossRefGoogle Scholar
  22. 22.
    O. V. Levtsova, I. D. Davletov, O. S. Sokolova, and K. V. Shaitan, Biophysics 56, 220 (2011).CrossRefGoogle Scholar
  23. 23.
    K. V. Shaitan, M. Yu. Antonov, A. K. Shaitan, et al., Nanostrukt. Mat. Fiz. Model. 6(1–2), 61 (2011).Google Scholar
  24. 24.
    O. S. Sokolova, K. V. Shaitan, A. V. Grizel’, et al., Bioorg. Khim. 38, 177 (2012).Google Scholar
  25. 25.
    K. V. Shaitan, O. S. Sokolova, A. K. Shaytan, et al., Mosc. Univ. Biolog. Sci. Bull. 68, 8 (2013).CrossRefGoogle Scholar
  26. 26.
    A. V. Finkel’shtein and O. B. Ptitsyn, Physics of Proteins (KDU, Moscow, 2002) [in Russian].Google Scholar
  27. 27.
    K. V. Shaitan and I. V. Fedik, Biophysics 53, 44 (2008).CrossRefGoogle Scholar
  28. 28.
    M. Yolamanova, C. Meier, A. K. Shaytan, et al., Nature Nanotechnol. 8, 130 (2013).CrossRefGoogle Scholar
  29. 29.
    A. K. Shaytan, E.-K. Schillinger, P. G. Khalatur, et al., ACS Nano 5, 6894 (2011).CrossRefGoogle Scholar
  30. 30.
    A. K. Shaitan, P. G. Khalatur, and A. R. Khokhlov, in Supercomputer Technologies in Science, Education, and Industry, Ed. by V. A. Sadovnichii, G. I. Savin, and V. V. Voevodin (Mosk. Gos. Univ., Moscow, 2009), p. 51 [in Russian].Google Scholar
  31. 31.
    A. K. Shaytan, A. R. Khokhlov, and P. G. Khalatur, Soft Matter 6, 1453 (2010).CrossRefGoogle Scholar
  32. 32.
    K. V. Shaitan, E. V. Turlei, D. N. Golik, et al., Vestn. Biotekhnol. Fiz.-Khim. Biol. 1, 66 (2005).Google Scholar
  33. 33.
    K. V. Shaitan, Y. V. Tourleigh, D. N. Golik, and M. P. Kirpichnikov, J. Drug Delivery Sci. Technol. 16, 253 (2006).Google Scholar
  34. 34.
    K. V. Shaitan, Y. V. Tourleigh, and M. P. Kirpichnikov, J. Qafqaz Univ., No. 21, 3 (2007).Google Scholar
  35. 35.
    J. Milnor, Morse Theory, Annals of Mathematic Studies AM-51 (Princeton University Press, Princeton, 1963; Mir, Moscow, 1965).Google Scholar
  36. 36.
    K. V. Shaitan, Biofizika 9, 949 (1994).Google Scholar
  37. 37.
    K. V. Shaitan, Macromol. Symp. 106, 321 (1996).CrossRefGoogle Scholar
  38. 38.
    K. V. Shaitan, Russ. J. Electrochem. 39, 198 (2003).CrossRefGoogle Scholar
  39. 39.
    K. V. Shaitan, A. A. Belyakov, K. M. Leont’ev, et al., Khim. Fiz. 22(2), 57 (2003).Google Scholar
  40. 40.
    K. V. Shaitan, Stochastic Dynamics of Reacting Biomolecules, Ed. by W. Ebeling, L. Schimansky-Gefer, and Y. M. Romanovsky (World Scientific, Singapore, 2003), p. 283.Google Scholar
  41. 41.
  42. 42.
    K. V. Shaitan and A. B. Rubin, Mol. Biol. 16, 1004 (1982).Google Scholar
  43. 43.
    C. P. Collier, G. Mattersteig, E. W. Wong, et al., Science 289, 1172 (2000).CrossRefGoogle Scholar
  44. 44.
    Ye. V. Tourleigh and K. V. Shaitan, Defect Diffus. Forum 237–240, 1174 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations