Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 445–456 | Cite as

Femtosecond X-ray free-electron lasers: A new tool for studying nanocrystals and single macromolecules

  • Yu. F. KrupyanskiiEmail author
  • N. K. Balabaev
  • T. E. Petrova
  • D. O. Sinitsyn
  • E. V. Gryzlova
  • K. B. Tereshkina
  • E. G. Abdulnasyrov
  • A. S. Stepanov
  • V. Yu. Lunin
  • A. N. Grum-Grzhimailo
Structure of Chemical Compounds. Spectroscopy

Abstract

A brief overview of the design of femtosecond X-ray free-electron lasers (XFEL), characteristics of the emitted X-ray pulses, and potentialities of XFEL are presented. A concise analysis of the problems in modeling X-ray scattering patterns produced by ultraintense radiation sources is given.

Keywords

femtosecond X-ray pulses free electron lasers X-ray scattering diffraction nanocrystals biomacromolecules resolution computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Seibert, T. Ekeberg, F. R. N. C. Maia, et al., Nature 470, 78 (2011).CrossRefGoogle Scholar
  2. 2.
    H. N. Chapman, P. Fromme, A. Barty, et al., Nature 470, 73 (2011).CrossRefGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    L. Young, E. P. Kanter, B. Krässig, et al., Nature 466, 56 (2010).CrossRefGoogle Scholar
  8. 8.
    S. K. Son, L. Young, and R. Santra, Phys. Rev. A 83, 033402 (2011).CrossRefGoogle Scholar
  9. 9.
    M. O. Krause and J. H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979).CrossRefGoogle Scholar
  10. 10.
    C. Caleman, G. Huldt, F. R. N. C. Maia, et al., ACS Nano 5, 139 (2011).CrossRefGoogle Scholar
  11. 11.
    W. J. Veigele, At. Data 5, 51 (1973).CrossRefGoogle Scholar
  12. 12.
    J. H. Hubbell, W. J. Veigele, E. A. Briggs, et al., J. Phys. Chem. Ref. Data 4, 471 (1975).CrossRefGoogle Scholar
  13. 13.
  14. 14.
    B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).CrossRefGoogle Scholar
  15. 15.
    A. Barty, C. Caleman, A. Aquila, et al., Nature Photon. 6, 35 (2012).CrossRefGoogle Scholar
  16. 16.
    R. Neutze, R. Wouts, D. van der Spoel, et al., Nature 406, 752 (2000).CrossRefGoogle Scholar
  17. 17.
    S. P. Hau-Riege, R. A. London, and A. Szoke, Phys. Rev. E 69, 051906 (2004).CrossRefGoogle Scholar
  18. 18.
    Z. Jurek, G. Faigel, and M. Tegze, Eur. Phys. J. D 29, 217 (2004).CrossRefGoogle Scholar
  19. 19.
    M. Hoener, L. Fang, O. Kornilov, et al., Phys. Rev. Lett. 104, 253002 (2010).CrossRefGoogle Scholar
  20. 20.
    N. Rohringer and R. Santra, Phys. Rev. A 76, 033416 (2007).CrossRefGoogle Scholar
  21. 21.
    G. Doumy, C. Roedig, S.-K. Son, et al., Phys. Rev. Lett. 106, 083002 (2011).CrossRefGoogle Scholar
  22. 22.
    M. G. Makris, P. Lambropoulos, and A. Miheli, Phys. Rev. Lett. 102, 033002 (2009).CrossRefGoogle Scholar
  23. 23.
    A. A. Sorokin, S. V. Bobashev, T. Feigl, et al., Phys. Rev. Lett. 99, 213002 (2007).CrossRefGoogle Scholar
  24. 24.
    M. Richter, M. Ya. Amusia, S. V. Bobashev, et al., Phys. Rev. Lett. 102, 163002 (2009).CrossRefGoogle Scholar
  25. 25.
    M. Richter, J. Phys. B: At. Mol. Opt. Phys. 44, 075601 (2011).CrossRefGoogle Scholar
  26. 26.
    U. Lorenz, N. M. Kabachnik, E. Weckert, and I. A. Vartanyants, Phys. Rev. E 86, 051911 (2012).CrossRefGoogle Scholar
  27. 27.
    C. C. F. Blake and D. C. Phillips, in Proceedings of the Symposium on Biological Effects of Ionizing Radiation at the Molecular Level (International Atomic Energy Agency, 1962), p. 183.Google Scholar
  28. 28.
    R. B. Ravelli and S. M. McSweeney, Structure 8, 315 (2000).CrossRefGoogle Scholar
  29. 29.
    M. Weik, B. G. Ravelli, G. Kryger, et al., Proc. Natl. Acad. Sci. USA 97, 623 (2000).CrossRefGoogle Scholar
  30. 30.
    T. Petrova, S. Ginell, A. Mitschler, et al., Acta Crystallogr. D 66, 1075 (2010).CrossRefGoogle Scholar
  31. 31.
    G. Evans, M. Polentarutti, K. D. Carugu, and G. Bricogne, Acta Crystallogr. D 59, 1429 (2003).CrossRefGoogle Scholar
  32. 32.
    U. A. Ramagopal, Z. Dauter, R. Thirumuruhan, et al., Acta Crystallogr. D 61, 1289 (2005).CrossRefGoogle Scholar
  33. 33.
    V. Oliéric, E. Ennifar, A. Meents, et al., Acta Crystallogr. D 63, 759 (2007).CrossRefGoogle Scholar
  34. 34.
    V. Adam, A. Royant, V. Niviere, et al., Structure 12, 1729 (2004).CrossRefGoogle Scholar
  35. 35.
    J. Yano, J. Kern, K.-D. Irrgang, et al., Proc. Natl. Acad. Sci. USA 102, 12047 (2005).CrossRefGoogle Scholar
  36. 36.
    W. P. Burmeister, Acta Crystallogr. D 56, 328 (2000).CrossRefGoogle Scholar
  37. 37.
    E. Fioravanti, F. M. D. Vellieux, P. Amara, et al., J. Synchrotron Rad. 14, 84 (2007).CrossRefGoogle Scholar
  38. 38.
    T. Petrova, V. Y. Lunin, S. Ginell, et al., J. Mol. Biol. 387, 1092 (2009).CrossRefGoogle Scholar
  39. 39.
    A. Yonath, J. Harms, H. A. Hansen, et al., Acta Crystallogr. A 54, 945 (1998).CrossRefGoogle Scholar
  40. 40.
    R. B. G. Ravelli, P. Theveneau, S. McSweeney, and M. Caffrey, J. Synchrotron Rad. 9, 355 (2002).CrossRefGoogle Scholar
  41. 41.
    P. Sliz, S. C. Harrison, and G. Rosenbaum, Structure 11, 13 (2003).CrossRefGoogle Scholar
  42. 42.
    N. Shimizu, K. Hirata, K. Hasegawa, et al., J. Synchrotron Rad. 14, 4 (2007).CrossRefGoogle Scholar
  43. 43.
    R. Henderson, Proc. Biolog. Sci. 241, 6 (1990).CrossRefGoogle Scholar
  44. 44.
    R. L. Owen, E. Rudiño-Piñera, and E. F. Garman, Proc. Natl. Acad. Sci. USA 103, 4912 (2006).CrossRefGoogle Scholar
  45. 45.
    E. F. Garman and R. L. Owen, Acta Crystallogr. D 62, 32 (2006).CrossRefGoogle Scholar
  46. 46.
    M. Nukagara, K. Mayama, A. M. Hujer, et al., J. Mol. Biol. 328, 289 (2003).CrossRefGoogle Scholar
  47. 47.
    C. N. Fuhrmann, B. A. Kelch, N. Ota, and D. A. Agard, J. Mol. Biol. 338, 999 (2004).CrossRefGoogle Scholar
  48. 48.
    S. Banumathi, P. H. Zwart, U. A. Ramagopal, et al., Acta Crystallogr. D 60, 1085 (2004).CrossRefGoogle Scholar
  49. 49.
    A. González, J. Synchrotron Rad. 14, 43 (2007).CrossRefGoogle Scholar
  50. 50.
    M. Schiltz and G. Bricogne, J. Synchrotron Rad. 14, 34 (2007).CrossRefGoogle Scholar
  51. 51.
    J. M. Holton, J. Synchrotron Rad. 14, 51 (2007).CrossRefGoogle Scholar
  52. 52.
    R. J. Southworth-Davies, M. A. Medina, I. Carmichael, and E. F. Garman, Structure 15, 1531 (2007).CrossRefGoogle Scholar
  53. 53.
    A. Meents, B. Dittrich, and S. Gutmann, J. Synchrotron Rad. 16, 183 (2009).CrossRefGoogle Scholar
  54. 54.
    A. Meents, S. Gutmann, A. Wagner, and C. Schulze-Briese, Proc. Natl. Acad. Sci. USA 107, 1094 (2010).CrossRefGoogle Scholar
  55. 55.
    M. Bergh, N. O. Timneanu, and D. van der Spoel, Phys. Rev. E 70, 051904 (2004).CrossRefGoogle Scholar
  56. 56.
    H. Chapman, A. Barty, M. Bogan, et al., Nature Phys. 2, 839 (2006).CrossRefGoogle Scholar
  57. 57.
    S. P. Hau-Riege, R. A. London, H. N. Chapman, and M. Bergh, Phys. Rev. E 76, 046403 (2007).CrossRefGoogle Scholar
  58. 58.
    C. Gnodtke, U. Saalmann, and J. M. Rost, Phys. Rev. A 79, 041201 (2009).CrossRefGoogle Scholar
  59. 59.
    P. Jordan, P. Fromme, H. T. Witt, et al., Nature 411, 909 (2001).CrossRefGoogle Scholar
  60. 60.
    L. Lomb, T. R. M. Barends, S. Kassemeyer, et al., Phys. Rev. B 84, 214111 (2011).CrossRefGoogle Scholar
  61. 61.
    S. Boutet, L. Lomb, G. J. Williams, et al., Science 337, 362 (2012).CrossRefGoogle Scholar
  62. 62.
    H. N. Chapman, S. P. Hau-Riege, M. J. Bogan, et al., Nature 448, 676 (2007).CrossRefGoogle Scholar
  63. 63.
    M. M. Seibert, S. Boutet, M. Svenda, et al., J. Phys. B 43, 194015 (2010).CrossRefGoogle Scholar
  64. 64.
    C. Caleman, M. Bergh, H. A. Scott, et al., J. Mod. Opt. 58, 1486 (2011).CrossRefGoogle Scholar
  65. 65.
    R. A. Kirian, X. Wang, U. Weierstall, et al., Opt. Express 18, 5713 (2010).CrossRefGoogle Scholar
  66. 66.
    C. M. Kewish, P. Thibault, O. Bunk, F. Pfeiffer, et al., New J. Phys. 12, 035005 (2010).CrossRefGoogle Scholar
  67. 67.
    F. R. N. C. Maia, T. Ekeberg, D. van der Spoel, and J. Hajdu, J. Appl. Crystallogr. 43, 1535 (2010).CrossRefGoogle Scholar
  68. 68.
    N. D. Loh, M. J. Bogan, and V. Elser, Phys. Rev. Lett. 104, 225501 (2010).CrossRefGoogle Scholar
  69. 69.
    J. C. H. Spence, R. A. Kirian, X. Wang, et al., Opt. Express 19, 2866 (2011).CrossRefGoogle Scholar
  70. 70.
    H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys. Commun. 91, 43 (1995).CrossRefGoogle Scholar
  71. 71.
    H. A. Scott and R. W. Mayle, Appl. Phys. B 58, 35 (1994).CrossRefGoogle Scholar
  72. 72.
    H. A. Scott, J. Quantum Spectrosc. Rad. Transfer 71, 689 (2001).CrossRefGoogle Scholar
  73. 73.
    G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen, J. Phys. Chem. B 105, 6474 (2001).CrossRefGoogle Scholar
  74. 74.
    P. M. Morse, Phys. Rev. 34, 57 (1929).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. F. Krupyanskii
    • 1
    Email author
  • N. K. Balabaev
    • 2
  • T. E. Petrova
    • 2
  • D. O. Sinitsyn
    • 1
  • E. V. Gryzlova
    • 3
  • K. B. Tereshkina
    • 1
  • E. G. Abdulnasyrov
    • 1
  • A. S. Stepanov
    • 1
  • V. Yu. Lunin
    • 2
  • A. N. Grum-Grzhimailo
    • 3
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Mathematical Problems of BiologyRussian Academy of SciencesPushchino, Moscow oblastRussia
  3. 3.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations