Russian Journal of Physical Chemistry B

, Volume 8, Issue 2, pp 152–157 | Cite as

Dynamic modeling of cyclotetracubyl thermal decomposition

  • M. M. Maslov
  • K. P. Katin
  • A. I. Avkhadieva
  • A. I. Podlivaev
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

Cyclotetracubyl (C8H6)4 is the smallest possible two-dimensional oligomer constructed from cubylene units. An original quantum-chemical method for molecular modeling is for the first time used to determine its thermokinetic parameters (activation energy and frequency factor). The temperature dependence of the lifetime of cyclotetracubyl over the temperature range 700–1600 K is examined. The results are compared with the data for individual cubane and linear tetracubyl in order to analyze the influence of the dimension of oligomers on their thermal stability and decomposition mechanisms. Modeling of heavier oligomers, C72H48, C128H80, and C200H120, made it possible to obtain, by extrapolation, the binding energy per cubylene fragment in an infinite two-dimensional layer (E b = 8.62 eV/mer) and to determine the dependence of the HOMO-LUMO gap on the characteristic size of the oligomer.

Keywords

hydrocarbon cubane two-dimensional oligomers cyclotetracubyl tight-binding potential molecular dynamics thermal stability activation energy frequency factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964).CrossRefGoogle Scholar
  2. 2.
    R. Gilardi, M. Maggini, and P. E. Eaton, J. Am. Chem. Soc. 110, 7232 (1988).CrossRefGoogle Scholar
  3. 3.
    F. Valencia, A. H. Romero, M. Kiwi, R. Ramírez, and A. Toro-Labbe, J. Chem. Phys. 121, 9172 (2004).CrossRefGoogle Scholar
  4. 4.
    B. Herrera, F. Valencia, A. H. Romero, et al., J. Mol. Struct.: THEOCHEM 769, 183 (2006).CrossRefGoogle Scholar
  5. 5.
    M. M. Maslov, Fullerenes, Nanotubes Carbon Nano-struct. 19, 127 (2011).CrossRefGoogle Scholar
  6. 6.
    E. Konstantinova, A. Camilo, Jr., P. M. V. B. Barone, S. O. Dantas, and D. S. Galvão, J. Mol. Struct.: THEOCHEM 868, 37 (2008).CrossRefGoogle Scholar
  7. 7.
    E. Konstantinova, P. M. V. B. Barone, and S. O. Dantas, J. Mol. Struct.: THEOCHEM 909, 116 (2009).CrossRefGoogle Scholar
  8. 8.
    F. Valencia, A. H. Romero, M. Kiwi, R. Ramírez, and A. Toro-Labbe, Phys. Rev. B 71, 033410 (2005).CrossRefGoogle Scholar
  9. 9.
    M. M. Maslov, Russ. J. Phys. Chem. B 4, 211 (2010).CrossRefGoogle Scholar
  10. 10.
    P. P. Pal and R. Pati, J. Phys. Chem. C 115, 17564 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Pokropivny and S. Volz, Phys. Status Solidi B 249, 1704 (2012).CrossRefGoogle Scholar
  12. 12.
    L. A. Openov and A. I. Podlivaev, Semiconductors 45, 633 (2011).CrossRefGoogle Scholar
  13. 13.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).CrossRefGoogle Scholar
  14. 14.
    M. M. Maslov and K. P. Katin, Chem. Phys. 387, 66 (2011).CrossRefGoogle Scholar
  15. 15.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51, 645 (2009).CrossRefGoogle Scholar
  16. 16.
    K. P. Katin and M. M. Maslov, Russ. J. Phys. Chem. B 5, 770 (2011).CrossRefGoogle Scholar
  17. 17.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 53, 2532 (2011).CrossRefGoogle Scholar
  18. 18.
    M. P. Allen and D. J. Tildesley, Computer Simuation of Liquids (Oxford Univ. Press, New York, 1987).Google Scholar
  19. 19.
    L. A. Openov and A. I. Podlivaev, Phys. Solid State 50, 1195 (2008).CrossRefGoogle Scholar
  20. 20.
    L. A. Openov and A. I. Podlivaev, JETP Lett. 84, 68 (2006).CrossRefGoogle Scholar
  21. 21.
    L. A. Openov, I. V. Davydov, and A. I. Podlivaev, JETP Lett. 85, 339 (2007).CrossRefGoogle Scholar
  22. 22.
    X.-J. Han, Y. Wang, Z.-Z. Lin, et al., J. Chem. Phys. 132, 064103 (2010).CrossRefGoogle Scholar
  23. 23.
    G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).CrossRefGoogle Scholar
  24. 24.
    S. N. Tkachev, M. Pravica, E. Kim, E. Romano, and P. F. Weck, J. Phys. Chem. A 112, 11501 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. M. Maslov
    • 1
  • K. P. Katin
    • 1
  • A. I. Avkhadieva
    • 1
  • A. I. Podlivaev
    • 1
  1. 1.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations